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Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of
brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of
these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational
models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the
local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To
examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC
circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range
projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM
and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC tran-
siently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates
graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses
related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during
cognitive function and provide a framework for extension to multiregional models.
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Introduction
Cognitive functions engage distributed networks of areas in the
primate brain, with prefrontal cortex (PFC) and posterior pari-

etal cortex (PPC) as key nodes (Duncan, 2010; Mitchell et al.,
2016; Domenech et al., 2017). Working memory (WM) and
decision-making (DM) are fundamental building blocks of cog-
nition that recruit a common prefrontal–parietal network, with
WM and DM signals partially overlapping at the neuronal level
(Meister et al., 2013). Both PPC and PFC exhibit characteristic
neural activity of WM and DM. WM is associated with stimu-
lus-selective persistent activity that spans the mnemonic delay
(Goldman-Rakic, 1995; Constantinidis and Procyk, 2004). DM is
associated with ramping dynamics reflecting the accumulation of
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Significance Statement

Working memory and decision-making are fundamental “building blocks” of cognition, and deficits in these functions are
associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with
prefrontal cortex (PFC) and posterior parietal cortex (PPC) at the core. It is not clear, however, what the contributions of PPC and
PFC are in light of the computations that subserve working memory and decision-making. We constructed a biophysical model of
a reciprocally connected frontoparietal circuit that revealed shared and distinct functions for the PFC and PPC across working
memory and decision-making tasks. Our parsimonious model connects circuit-level properties to cognitive functions and sug-
gests novel design principles beyond those of local circuits for cognitive processing in multiregional brain networks.
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evidence and target selection (Schall, 2001;
Gold and Shadlen, 2007). The general simi-
larity of neural activity of PPC and PFC dur-
ing WM and DM has supported the view
that they make comparable contributions to
these functions.

Important open questions are to iden-
tify how PPC and PFC interact during
WM and DM and what their specialized
roles may be. For instance, WM-related
persistent activity in these areas may be a
locally generated phenomenon or, alter-
natively, the result of distributed interar-
eal interactions (Christophel et al., 2017).
Despite general similarities between neu-
ral responses in PPC and PFC, important
differences, including in distractor pro-
cessing and evidence accumulation, have
been found that provide insight into their
unique contributions to WM and DM
(Katsuki and Constantinidis, 2012b; Su-
zuki and Gottlieb, 2013; Hanks et al.,
2015). It is unclear to what degree the
function specialization of areas may be
due to intrinsic differences in local micro-
circuitry (Katsuki et al., 2014; Murray et
al., 2014b). In addition to differences between areas, single-
neuron recordings have revealed a diversity of functionally de-
fined cell types within frontoparietal circuits, across both WM
and DM (Schall and Thompson, 1999; Ferraina et al., 2002; Law-
rence et al., 2005). These findings raise questions of the division
of labor among brain areas, or functional cell types, within dis-
tributed cortical circuits during cognition.

Biophysically based computational models of cortical cir-
cuits have characterized neural circuit mechanisms for WM
and DM functions. A class of models called attractor net-
works can perform these functions through strong recurrent
synaptic interactions (Wang, 2008). In the attractor network
framework, strong synaptic connections among neurons can
provide reverberatory excitation, potentially mediated by slow
NMDA receptors (Wang, 1999), that maintains a stimulus-
selective persistent activity pattern for WM (Amit and Brunel,
1997; Wang, 2001; Machens et al., 2005). Strong lateral inhibi-
tion, mediated by GABAergic interneurons, can enforce selectiv-
ity of the WM representation, preventing an unstructured spread
of excitatory activity (Compte et al., 2000; Brunel and Wang,
2001). Attractor networks can also perform slow integration
and categorical, winner-take-all competition for perceptual DM
(Wang, 2002; Wong and Wang, 2006). Indeed, strong recurrent
excitation and lateral inhibition are required for winner-take-all
DM in these models. Attractor networks therefore constitute a
flexible type of “cognitive circuit” capable of performing both
WM and DM (Wang, 2013). In contrast to these theoretical ad-
vances in characterizing how local microcircuits can support cog-
nitive processing, the computational principles for distributed
cognitive processing in multiregional cortical networks remain
poorly understood.

To address these issues, we developed a biophysically based
computational model of two reciprocally connected modules,
potentially representing circuits in PPC and PFC. We found that
a single local circuit faces a tradeoff between optimization for
WM versus DM function. This performance tradeoff can be ame-
liorated in the distributed circuit, whose network properties are

functionally desirable for both WM and DM. With a single set of
network parameters, the distributed model can capture salient
empirical observations from single-neuron recordings in PPC
and PFC during WM and DM. In the context of WM, the
model captures the relative roles of the two areas in distractor
filtering. With regard to DM, the model captures key proper-
ties of functional cell types and the timing of their activity
during visual search tasks. We propose that this cortical circuit
model can provide insight into canonical features of distrib-
uted cognitive processing.

Materials and Methods
Model architecture. We constructed a distributed circuit model that is
able to perform WM and DM computations. The model is comprised
of two reciprocally interacting modules (Fig. 1; also see Fig. 3A). Each
module contains two selective, excitatory populations, labeled A and B
(Wong and Wang, 2006; Wong et al., 2007). Within a module, the two
populations have self-excitation and interact through a local inhibitory
population that allows for cross-inhibition between the two excit-
atory populations. Each recurrently connected excitatory population re-
ceives inhibition from a common pool of interneurons. Inhibition is
linearized so that projections between the two excitatory populations A
and B are effectively represented by negative weights (Wong and Wang,
2006). The two modules interact through long-range projections that are
structured according to the stimulus selectivity of populations within
each module. Long-range projections between modules are structured so
that populations with the same selectivity are connected through excit-
atory projections, whereas populations with different selectivity are con-
nected via net inhibitory projections. The two modules are labeled 1 and
2, and external input related to the stimulus enters into Module 1 (see
Fig. 3A).

Dynamics and stimuli. We constructed a population firing-rate model
for each population i � A, B in the two modules. The firing-rate dynam-
ics of the population i in Modules 1 and 2 are dominated by the dynamics
of the average NMDA synaptic gating variable Si

n (n � 1,2). This approx-
imation is based on the fact that the dynamics of the NMDA synaptic
gating variable are slower than other timescales in the system (Wang,
2002; Wong and Wang, 2006; Wong et al., 2007). The gating variable Si

n

is described as follows:

Figure 1. Circuit schematic of the firing-rate model. A module is defined as a set of two excitatory populations where each
population is selective to one of two spatial, directional, or object stimuli (left). Each excitatory population is recurrently connected
and also receives inhibition from a common pool of interneurons. The effects of inhibition and recurrent excitation are to generate
bistability for WM and winner-take-all dynamics and ramping activity through slow reverberation for DM. Population A (B) receives
input either from spatially selective stimulus A� (B�) or from another population A (B) in another module. The circuit dynamics can
be simplified (right) by linearizing inhibition, so that effectively inhibition is represented by negative weights. Thus, the effect of
the pool of interneurons is implicit in the inhibitory connections between the excitatory populations. In general, synaptic weights
J can connect two selective populations of either the same (Jsame � 0) or opposite (Jdiff � 0) stimulus selectivity and can be either
local or long range. The structure JS � Jsame � Jdiff denotes the total recurrent strength, while the tone JT � Jsame � Jdiff denotes
the net input onto a population. Synapses labeled with triangles and circles denote net-excitatory and net-inhibitory connections,
respectively.
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dSi
n

dt
� �

Si
n

�
� ��1 � Si

n	r�Ii
n	, (1)

where � � 60 ms is the NMDA time constant, � � 0.641 controls the rate
of saturation of S, and r�Ii

n	 is the firing rate of the population i as a
function of the input current Ii

n. The firing rate as a function of input
current is given by the following frequency-current (F–I) curve relation
(Abbott and Chance, 2005):

r�I	 � F�I	 �
aI � b

1 � exp
�c�aI � b	�
(2)

with a � 270 Hz/nA, b � 108 Hz, and c � 0.154 s. The input current to
population i � A, B in Modules 1 and 2 is given by the following:

Ii
n � �

m, j
Sj

mJij
�m¡n	 � I0 � Inoise,i

n � Iapp,i
n (3)

where Jij
�m¡n	 is the connection weight from population j in Module m to

population i in Module n, I0 � 0.334 nA is the background current, Inoise,i
n

is the noise current to population i in Module n, and Iapp,i
n is the applied

current to population i in Module n from external sources. For simula-
tions of the one-module network in Figure 2, m � n � 1 so that all
connections are local.

The noise current to each population follows Ornstein–Uhlenbeck
dynamics with the time constant of AMPA synapses, as follows:

�AMPA

dInoise,i�t	

dt
� �Inoise,i�t	 � �i�t	��AMPA�noise

2 , (4)

where �AMPA � 2 ms, � is Gaussian white noise with zero mean and unit
variance, and �noise sets the strength of the noise. As in Wong et al.
(2007), we set �noise � 0.009 nA.

We consider the external applied current Iapp for the following scenar-
ios: (1) WM and DM in a one-module (local) circuit; (2) WM and
distractors in the PPC–PFC circuit; (3) evidence accumulation in the
PPC–PFC circuit; and (4) target selection in a visual search task in the
selection–action circuit. We will specify the external currents below after
the connectivity section.

Connectivity. The connectivity in our model is specified by the sign and
magnitude of the connection weights between the selective excitatory
populations. The connections can be local (within a module) and, for a
two-module circuit, long range (across modules). To this end, it is useful
to express the connection weights with the following terms:

JS
k � J�same	

k � J�diff	
k (5)

JT
k � J�same	

k � J�diff	
k (6)

where J(same) denotes the positive connection weight between same-
selectivity populations (e.g., from population A in Module 1 to population A
in Module 1 or 2). J(diff) denotes the negative connection weight between
different-selectivity populations (e.g., from population A in Module 1 to
population B in Module 1 or 2), and k � 1¡ 1, 1¡ 2, 2¡ 1, 2¡ 2 defines
whether the connection is local or long range. We define JS as the structure of
the network, since it reflects the magnitude of same-selectivity excitation and
different-selectivity cross-inhibition, and thus the total recurrent strength.
Analogously, we define JT as the tone of the network, which reflects the net
input onto a particular population.

In Figure 2, we consider a one-module circuit with two structure val-
ues (JS � 0.35 and JS � 0.4182 nA and tone JT � 0.28387). A two-module
network is constructed by connecting two modules (Module 1 and Mod-
ule 2) via long-range projections. Local connectivity for Module 1 is set
by the following: JS

�1¡1	 � 0.35 nA and JT
�1¡1	 � 0.28387 nA. Local

connectivity for Module 2 is set by the following: JS
�2¡2	 � 0.4182 nA

and JT
�2¡2	 � 0.28387 nA. The only difference in local network proper-

ties between modules is that Module 2 has an enhanced structure com-
pared with Module 1: JS

�2¡2	 	 JS
�1¡1	.

For both long-range projections between modules, we constrain
them to have the following pathway-specific excitation–inhibition
(E/I) balance:

JT
�1¡2	 � 0 nA, (7)

JT
�2¡1	 � 0 nA, (8)

so that the excitatory weight to a given population is counteracted by the
inhibition of equal magnitude but opposite sign. If a pathway from one
module to another exhibits balance (JT � 0), the impact of one module to
another is only nonzero when the populations have unequal activity (see
also Vogels and Abbott (2009)). The structure of the projection from
Module 1 to Module 2 is set by JS

�1¡2	 � 0.15 nA. The structure of the
projection from Module 2 to Module 1 is set by JS

�2¡1	 � 0.04 nA.
We can easily translate the structure JS and tone JT into individual

synaptic weights. For example, JAB
�1¡2	 denotes the feedforward projection

between the population A in the first module onto the population B in
the second module and is given by the following:

JAB
�1¡2	 �

JT
�1¡2	 � JS

�1¡2	

2
� � 0.075 nA.

The decomposition of connectivity in terms of structure JS and tone JT is
useful for capturing the impact of changes in activity that are symmetric
or asymmetric between the populations of a module. The input current I
to a given population from Module m to Module n can be written as
follows (see first term on the right-hand side of Eq. 3):

I�m¡n	 �
1

2
� JS

�m¡n	SS
m � JT

�m¡n	ST
m	, (9)

where S is similarly redefined through SS
m � S�same	

m � S�diff	
m and

ST
m � S�same	

m � S�diff	
m . When activity in a module is equal in the two

populations (i.e., SS
m � 0), the net input from that module is deter-

mined only by the tone JT and not by the structure JS.
For the results in this study, we associate Module 1 with the PPC and

Module 2 with the PFC.
Working memory and decision-making in a local network. To character-

ize WM in a local network (Fig. 2 A, B), we studied the generation of
stimulus-selective persistent activity states and their robustness against
intervening distractor inputs. The target to be held in WM is the first
stimulus presented. We set the target as a current applied to population
A, as follows: Iapp,A � Itarget of 500 ms duration and amplitude 0.0295 nA.
Distractors are defined as inputs Iapp,B � Idistractor of equal amplitude and
duration applied to population B arriving after the target.

In Figure 2, C and D, we characterized the robustness of WM against
distractors in a local one-module circuit, over a two-dimensional parameter
space of structure JS and applied current Iapp. For these results, bifurcations
and continuations were calculated using PyDSTool, a Python-based plat-
form developed for the analysis of dynamic systems (Clewley, 2012).

We modeled perceptual decision-making in Figure 2, E and F. The
strength of evidence is modeled as an external current to the two popu-
lations as follows:

Iapp,i � Ie�1 

c�

100%�, (10)

where Ie �0.0118 nA scales the overall strength of the input and c�, referred to as
the contrast, sets the bias of the input for one population over the other, which is
equivalent to the coherence in the study by Wong and Wang (2006).

In Figure 2H, we defined the discrimination threshold c�disc as the
minimum contrast to achieve 81.6% accuracy in a simulated two-
alternative forced choice task. This number follows from the equation
commonly used to fit psychometric curves, as follows:

P�c�	 � 1 � 0.5 � exp� � c�/c�disc	
�, (11)

where P is the accuracy in the task and � determines the slope of the
psychometric curve. We varied the recurrent structure JS from JS � 0.35
to JS � 0.42 nA in steps of 0.01 nA and used Equation 11 to fit the
behavior of our simulated model and determine the discrimination
threshold.
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In Figure 3D, to understand how the dynamics of the distributed two-
module circuit depends on the structure, we parametrically varied the
Module 1 (PPC) local structure JS

�1¡1	 from 0.15 to 0.45 nA and the
PFC ¡ PPC feedback structure JS

�2¡1	 from 0 to 0.08 nA, in steps of 0.02
nA, while keeping all other parameters constant.

Working memory and distractors in the PPC–PFC circuit. For Figures 4 and
5, we simulated a WM task with distractors, based on a primate electrophys-
iology study using a visuospatial WM task in which a subject must hold in
WM the position of a target and filter intervening distractor stimuli appear-
ing at other positions during the delay period (Suzuki and Gottlieb, 2013).
We implemented a discrete version of this task with selectivity to two stimuli.
A flash of 100 ms appears on one of two positions of a screen indicating the
target position. As in the WM simulations for one module, the target to be
held in WM is the first stimulus presented. We set the target as a current
Iapp,A � Itarget of 100 ms duration that is applied to population A in the PPC
module. Distractors are defined as inputs Iapp,B � Idistractor of equal duration
applied to population B arriving after the target and at an opposite location
of the visual field. Similar to the study by Suzuki and Gottlieb (2013), we
considered four times of target-distractor onset asynchrony (TDOA), which
was defined as the onset of the distractor relative to onset of the target, as
follows: 100, 150, 200, and 300 ms. Target and distractor amplitudes for
Figure 4 were 0.09 nA. To obtain both correct and error trials in Figure 5,
targets and distractor amplitudes were sampled randomly and indepen-
dently from a Gaussian distribution with a mean of 0.09 nA and an SD of 0.04
nA and were, in general, different from each other and from trial to trial.

In Figure 4B, we calculated the differences between the two modules in
terms of how distractors are suppressed. For this, we fitted the time
courses of the firing rates r(t) of the populations selective to the distractor
for each of the modules with an exponential function, as follows:

r�t	 � a1 � exp� � �t � ttarget	

�sup
� � a2, (12)

where ttarget marks the time of target onset and also suppression of the
distractor, �sup is the timescale of suppression, and a1 and a2 are param-
eters of the fit.

In Figure 4C, we performed an autocorrelation on the firing rate to
reveal the intrinsic or fluctuation timescales of spontaneous activity.
The firing rate was first filtered with a Gaussian function with window
�filter � 20 ms. To compute the autocorrelation of the firing rate, we
subtracted the mean from the firing rate and then normalized. We then
used Equation 12 to fit the normalized firing-rate autocorrelation and
extract the respective timescales �fluct.

We plotted error rates versus the time of distractor presentation relative to
the target in Figure 5C, where an error is recorded when the population
selective to the distractor is at the high memory state at t � 3000 ms.

Evidence accumulation in the PPC–PFC circuit. As shown in Figure 6,
we simulated a simple version of a discrete evidence accumulation task
based on a two-alternative forced choice task with perceptual decisions
that rely on evidence accumulation from discrete auditory stimuli (Brun-
ton et al., 2013). The auditory input consists of a sequence of clicks on
both sides (left and right), parametrized by click frequency in units of
clicks per second. For example, 10:24 constitutes a trial where 10 repre-
sents the click frequency for the left side and 24 constitutes the click
frequency for the right side. In the task, the subject is rewarded for re-
porting which side (left vs right) had the higher frequency signal. This
task can be solved by integrating evidence, where each click represents a
unit (quantum) of evidence (Hanks et al., 2015).

In our model, clicks are represented by a set of Poisson-distributed
times, parametrized by the rate and side of origin, either left or right. The
rates for each side are such that they add to up to 34 clicks/s in total. For
example, a difficult trial is 18:16 clicks/s, while an easy trial is 30:4 clicks/s.
The click times ti for each side are convolved with a current pulse kernel
� of amplitude 0.0118 nA and pulse duration 50 ms, so that the current
IL,R is as follows:

IL,R�t	 � �
i

��t � ti	. (13)

These currents, corresponding to left and right clicks, are fed onto the
corresponding selective populations (left or right) of the PPC, as well

as to the accumulator, which we now define. The accumulator is an
implementation of a drift-diffusion model (Ratcliff, 1978), with pa-
rameters for drift, noise, and input stimulus (Brunton et al., 2013).
Time evolution of the accumulator value a at time t is given by the
following:

da

dt
� �a � IL�t	 � IR�t	 � �t	, (14)

where � is the drift and �t	 is Gaussian white noise with a mean of 0 and a
standard deviation of 0.1. We set � � 0, corresponding to leak-free inte-
gration, for the simulations in Figure 6, but small values of � did not
significantly alter these plots.

To obtain the relationship between an accumulator and PPC/PFC
firing rates, we selected four time points relative to response onset in the
PPC/PFC (t � 200, 250, 300, 350 ms) and obtained the distribution of
firing rates and accumulator values for each of those time points (Hanks
et al., 2015). For each of the time points, we binned the accumulator
values from �7 to 7, with a bin size of 2 and calculated the mean firing
rate for each bin. Applying this procedure to the four selected time
points, we obtain Figure 6C, where the firing rate is shown as a function
of time and is color coded as a function of accumulator value. Finally, to
obtain the relationship between firing rate and accumulator value for the
PPC and PFC, we averaged the firing rate over time for each of the
accumulator values i � �7, . . . 7 and scaled the corresponding firing rates
ri to account for differences in dynamic range (Hanks et al., 2015) as
follows:

ri
norm �

ri � minri�

maxri� � minri�
,

to finally obtain Figure 6B.
Target selection in a visual search task. In Figures 7 and 8, we simulated

a perceptual DM task analogous to target selection in visual search (Sato
et al., 2001) with the two-module circuit model. Each module contains
two populations that are selective to a target and a distractor, respec-
tively. As in the WM paradigm, external stimuli enter as currents into the
PPC module. These applied currents reflect the external stimulus as
follows:

Iapp,i � C�Atarget � Imotion	 � �exp� ��t � ttarget	

�decay
�

� exp� ��t � ttarget	

�rise
�� � Imotion, (15)

where Imotion � Ie � �1 

c�

100%�, Ie � 0.0118 nA scales the overall

strength of the input and c�, referred to as the contrast, and sets the bias of
the input for one population over the other, which is equivalent to the
coherence in the study by Wong and Wang (2006); Atarget and ttarget

determine the amplitude and the onset of the target, respectively; the
time constants �decay and �rise determine the approximate decay and rise
of the target-induced transient response; and C is a normalization factor.
A zero-contrast stimulus applies equal input Ie to each population in
Module 1 (PPC, also denoted as selection cells). In all of the simulations
and with c� � 0, the target-selective population receives the greater biased
input. Due to noise, however, this does not guarantee that the target
population will win, especially for low-contrast values.

Because our model provides instantaneous firing rates for a popula-
tion, we can define measures of neural activity directly for individual
trials. For DM simulations (Figs. 7, 8), we define and calculate the reac-
tion time as the time at which the firing rate of a population in Module 2
(PFC, also denoted as action cells) crosses a threshold (Hanes and Schall,
1996). We measure the discrimination time for selection cells in Module
1 (PPC) through a threshold on the absolute difference between firing
rates between the two populations. We measure the onset time for action
cells in Module 2 through a threshold on firing rate for the winning
population. The thresholds for reaction time, discrimination time, and
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onset time are 40, 12, and 7 Hz, respectively. Reaction times are divided
into quintiles for each of the contrast conditions. This is analogous to the
division into short, intermediate, and long reaction time groups (Sato et
al., 2001).

Disruption of pathway-specific excitation–inhibition balance. In Figure
8, we examined the effects of pathway-specific excitation–inhibition bal-
ance in intermodule projections. To this end, we systematically decreased
the inhibitory weights of the projections from Module 1 to Module 2 to
alter the E/I ratio. The altered inhibitory weights J�diff	

* are as follows:

J�diff	
* � cinh � J�diff	

1¡2, (16)

where J�diff	
1¡2 is the original (i.e., unaltered) inhibitory synaptic weight

between population A ( B) in Module 1 and population B ( A) in Module
2 and cinh � 0.2, 0.4, 0.8, 1�. According to Equation 16, cinh � 1 corre-
sponds to balanced excitation and inhibition onto both populations in
Module 2, while cinh � 1 corresponds to imbalance (i.e., a net positive
weight onto the populations; see Eqs. 6 and 7).

We fit the reaction time versus the contrast relation in Figures 7C, top,
and 8A using the following exponential function:

R�c�	 � a1 � a2 � exp� �a3 � �c� � a4		,

where R is reaction time, c� is the contrast and a1, a2, a3, a4 are free
parameters of the fit. Similarly, we fit the fraction of correct trials versus
contrast relation in Figures 8A and 7C, bottom, with a sigmoid, as fol-
lows:

F�c�	 � a1 �
a2

1 � exp� �a3 � �c� � a4		
,

where F is the fraction of correct trials, and a1, a2, a3, and a4 are param-
eters of the fit.

Tradeoff amelioration and parameter exploration in a two-module cir-
cuit. In Figure 9, we systematically varied the local structures JS

1¡1 and
JS

2¡2 to explore the behavior of the two-module circuit in response to
sustained and transient inputs for DM and WM computations, respec-
tively. We varied both JS

1¡1 and JS
2¡2 from 0.34 to 0.42 nA in steps of 0.01

nA, while keeping other parameters fixed, and calculated the discrimina-
tion threshold and robust stimulus range as follows. The discrimination
threshold for DM was calculated as in Equation 11 for each local struc-
ture pair  JS

1¡1, JS
2¡2�. To calculate the robust stimulus range for WM, we

used a paradigm similar to the one used for Figure 5A in which a target is
presented at t � 0 ms and is held in WM. The minimum current required
to induce a transition to the target-related high memory state is given by
Itarget � Imin. A distractor subsequently intervenes during the delay pe-
riod at t � 1300 ms. For each local structure pair  JS

1¡1, JS
2¡2�, we varied

the distractor current Idistractor from 0 to 2 nA in steps of 0.002 nA. The
maximum distractor current below which the target-related memory
state is robust (i.e., at t � 3000 ms the distractor does not override the
target representation) is Idistractor � Imax. The robust stimulus range is
calculated as Imax � Imin for each local structure pair  JS

1¡1, JS
2¡2�. For an

adequate comparison between the distractor-filtering abilities in the con-
trol and “no PFC feedback” cases, we scaled the robust stimulus range
and calculated the relative stimulus range Irel as follows:

Irel �
Imax � Imin

Imin
, (17)

for each local structure pair  JS
1¡1, JS

2¡2�. In Figures 9, C and F, we plotted
the discrimination threshold and relative stimulus range as a function of
the difference in structure along the line J1 � J2 � 0.76 nA, thus preserv-
ing the total structure in the two-module system.

Results
We have designed and characterized a distributed circuit model that
supports persistent activity for WM and slow integration over time
and winner-take-all competition for DM. The model is comprised of
two reciprocally connected modules that model the PPC and PFC.
Each module consists of two populations of excitatory neurons,

and each population is selective to one of two spatial, directional,
or object stimuli (Fig. 1; see also Materials and Methods). Local
connectivity (i.e., connectivity within a module) is specified by re-
current excitation and cross-inhibition. Long-range connectivity
(i.e., connectivity across modules) is specified by feedforward and
feedback projections that are net excitatory between same-selectivity
populations and net inhibitory between different-selectivity popula-
tions. Model parameters were chosen so that the same architecture
and parameter set could capture several important neurophysiolog-
ical dynamics observed in both WM and DM.

Tradeoffs in working memory and decision-making for a
local circuit
We first characterized WM and DM function in a local, one-
module network. Prior studies have shown that a local attractor
network can perform both WM and DM (Wang, 2002; Wong and
Wang, 2006). However, how well the same network can perform
both functions or what tradeoffs exist between the optimization
of local circuit properties for WM versus DM has been studied
less (Standage and Paré, 2011). Of particular interest is the role of
the local recurrent structure, parameterized by JS, here defined as
the total recurrent strength including self-excitation within a
population and cross-inhibition between populations (see Eq. 5
in Materials and Methods).

Working memory and robustness against distractors
In the attractor network framework, the key requirement for WM
function is multistability [i.e., the coexistence of multiple stable
fixed points (attractor states) in the absence of a stimulus; Amit
and Brunel, 1997; Wang, 1999; Brunel and Wang, 2001]. In the
absence of a stimulus, the simplified two-population network
studied here supports the following three stable states: one sym-
metric baseline state and two asymmetric memory states (Wong
and Wang, 2006). Before stimulus onset, the network is in the
symmetric baseline state with both populations, A and B, at low
activity (Fig. 2A,B). After one population is sufficiently activated,
it is able to remain persistently in a stimulus-selective, high-
activity state in the absence of a stimulus.

In addition to maintenance over time, robust WM requires
shielding internal representations from interference by both in-
ternal noise and external distraction. There is evidence that PPC
and PFC have different susceptibilities for distractors to disrupt
persistent activity. In general, PFC exhibits persistent activity that
is robust against distractors, whereas posterior association areas
in the temporal and parietal lobes exhibit persistent activity that
is disrupted by distractors (Miller et al., 1993, 1996; Constantini-
dis and Wang, 2004; Qi et al., 2010; Suzuki and Gottlieb, 2013).
Motivated by these findings, we explored the mechanisms of ro-
bustness against distraction and how they depend on network
structure. In our model, distractors can be modeled as an inter-
vening input during the WM delay to a different population than
the one activated by the WM target. For instance, if population A
is active in the memory state, a distractor is modeled as a subse-
quent input to population B.

We found that recurrent structure JS (i.e., the total self-
excitation and cross-inhibition within the one-module network)
plays a crucial role in determining the robustness against distrac-
tors in the local network (Fig. 2A–D). With moderate structure,
the network generates WM-related persistent activity, but it is
distractible. As shown in Figure 2A, the distractor input switches
the network to representing the distractor (red) instead of the
target (blue). With high structure, in contrast, the distractor is
filtered out and the target representation is robustly maintained
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(Fig. 2B). The network mechanism for ro-
bustness results from the combined ef-
fects of lateral inhibition and recurrent
excitation set by JS (Brunel and Wang,
2001). When population A is in the high-
activity state, distraction requires both ac-
tivation of population B and deactivation
of population A. Activation of population
B by the distractor input is counteracted
by lateral inhibition. Recurrent excitation
within population A counteracts the abil-
ity of inhibition from population B to de-
activate it.

A dynamic systems analysis can for-
mally characterize the robustness of WM
to distractors through the bifurcation di-
agram defining how the fixed points of the
system change as a function of input cur-
rent to one population Iapp. The bifurca-
tion diagram gives the range of input
current strengths in which WM is robust
against distractors. We can examine how
this range varies as a function of recurrent
structure JS. Figure 2, C and D, shows how
this robustness range of Iapp changes with
JS. We found that the distractibility
threshold (boundary between green and
orange regions) increases with JS. The mem-
ory induction threshold (boundary between
purple and green regions) decreases as JS

increases, widening the robustness range
further. The net effect is that the robust
stimulus range increases with higher re-
current structure JS (Fig. 2D). This analy-
sis suggests that increased robustness
against distractors in PFC, compared with
PPC, may be due to higher network struc-
ture (Brunel and Wang, 2001).

Decision-making and slow integration
of evidence
We now consider the ability of the attractor
network to perform perceptual DM func-
tions. In the attractor network framework,

A

B

C

D

E

F

G

H

Figure 2. Tradeoffs between WM and DM function in a local attractor network model. A, Neural activity for a single WM trial.
The colored bars mark presentation of input current to the population A (blue) and B (red), with strength Iapp � 0.0295 nA. For a
recurrent structure JS � 0.35 nA, the circuit generates a stimulus-selective persistent memory state, but it is vulnerable to
intervening distractors. B, At increased recurrent structure JS, WM activity in the circuit is robust against distractors. C, Robustness
of WM as a function of recurrent structure JS and stimulus strength Iapp. In the purple lower region, the stimulus is too weak for the
target to induce a transition from the (stable) baseline state to the memory state. In the green middle region, the network can
perform WM that is robust against intervening distractors. In the orange upper region, the stimulus current is strong enough for a
distractor to disrupt target-related memory. D, WM robustness increases with increasing recurrent structure JS. The robust stimulus
range is defined as the range of stimulus strength Iapp in which persistent activity is robust against distractors (i.e., by the height of
the green region in C). E, Neural activity during DM for zero-contrast stimulus (i.e., equal strength input to both populations), for
100 trials in which the blue population first reached threshold. The colored bar marks stimulus presentation, with strength Ie �
0.0118 nA. The black trace marks the firing rate of the winning population for the trial with median reaction time. Note that the

4

time range shown here is shorter than for the WM simulations
in A and B. F, At increased recurrent structure JS, integration is
shorter, limiting evidence accumulation, and ramping to
threshold occurs sooner. G, Integration time constant as a
function of recurrent structure JS and stimulus strength Ie for a
zero-contrast signal. The integration time constant is defined
as the absolute value of the inverse eigenvalue of the unstable
mode of the saddle point in the system (Wong and Wang,
2006). The inverse of the integration time constant is plotted.
The white region marks where the symmetric state is stable,
and therefore the network is not in a winner-take-all regime.
H, DM performance degrades with increasing recurrent struc-
ture. For a fixed stimulus strength (here with Ie � 0.0118 nA),
the integration time constant decreases with JS. Correspond-
ingly, the discrimination threshold increases, indicating de-
graded performance. Note that the two single modules shown
in A, B, E, and F have the same circuit parameters as the two
modules of the distributed circuit in subsequent figures.
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two key requirements for DM are slow accumulation of evidence
over time and winner-take-all competition (Wang, 2002; Wong and
Wang, 2006). Inputs to the network are characterized by the strength
of the evidence or contrast (see Eq. 10 in Materials and Methods).
For a zero-contrast stimulus, the two populations receive equal in-
put, differing only through the noise term. The network nevertheless
performs categorical selection through one population going to a
high-activity state and the other to a low-activity state.

To subserve perceptual DM, the network should be able to
integrate evidence over time when the signal-to-noise ratio is low
(Gold and Shadlen, 2007). In the model, a decision is made when
the corresponding neural population reaches a threshold firing
rate. As shown in Figure 2, E and F, the recurrent structure JS

plays a crucial role in determining the timescale of integration as
reflected in ramping neural activity, here with a zero-contrast
stimulus. With moderate structure, the network ramps relatively
slowly (median decision time, �560 ms), indicating that the net-
work implements slow integration of sensory evidence. With a

higher recurrent structure, the network ramps substantially faster
(median decision time �430 ms), indicating a more limited du-
ration over which the network integrates sensory evidence.

A dynamic systems analysis can formally characterize the in-
tegration timescale. In response to a zero-contrast stimulus, the
symmetric state of the network is a saddle point in the (S1, S2)
phase plane (Wong and Wang, 2006). The timescales associated
with this saddle point, along with the strength of noise, largely
determine the timescales of integration. The antisymmetric
mode, whose positive eigenvalue indicates that it is the unstable
mode, is the direction in which integration occurs and that leads
to categorical choice. The integration timescale �int can be de-
fined as the inverse of this eigenvalue. Figure 2G shows the de-
pendence of �int on network structure JS and stimulus current
strength Ie, for zero-contrast stimulus. As the system approaches
the bifurcations that form the boundaries of the winner-take-all
regime, the integration timescale increases toward infinity. For a
fixed Ie in a winner-take-all DM regime (Fig. 2G), increasing JS

BA

C D

Figure 3. A distributed cortical model reproduces spatially selective persistent activity through local and long-range connections. A, The circuit is composed of two reciprocally connected
modules, PPC and PFC, and each module consists of two excitatory neural populations selective to a stimulus A and B, respectively. The circuit model is endowed with self-excitation and
cross-inhibition. Neurons in the PPC receive the sensory stimulus and convey the information to the PFC via long-range net-excitatory and net-inhibitory projections, as in Figure 1. B–D, Local and
long-range structures jointly contribute to persistent activity. B, PPC and PFC populations reach the same level of persistent activity in the steady state across the three scenarios depicted in C,
demonstrating the joint contributions of long-range and local connectivity. Gold bar denotes stimulus presentation. C, Structure values reflecting local (within-module) and long-range (across-
module) connectivity for three scenarios are shown: (1) PPC and PFC both independently support persistent activity (green, top); (2) neither PPC nor PFC is capable of persistent activity independently
(purple, middle); and (3) only PFC independently supports persistent activity (bottom, red). Black horizontal line denotes the threshold for a local module to support persistent activity independently
(i.e., multiple stimulus-selective attractor states). D, Steady-state firing rate for the activated population of the PPC module in the memory state, as a function of PPC local structure and PFC¡ PPC
feedback. The PFC local and feedforward PPC¡ PFC structures are fixed. In the region in the upper right corner, the baseline state is unstable. In the region to the right of the white dashed line, the
PPC is an independent attractor. The white asterisk marks the parameter values used for the WM and DM simulations in Figures 4, 5, 6, 7, and 8.
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decreases the integration timescale, which
limits the duration over which perceptual
integration can occur. If less evidence is
integrated, we expect to have more errors
for a fixed contrast (coherence in Wong et
al. (2007); Gold and Shadlen (2007))
value. This degradation in performance is
measured by the increase of the discrimi-
nation threshold, defined as the contrast
necessary to achieve a predefined perfor-
mance level, here 81.6% correct (see Eq.
11 in Materials and Methods). Indeed, the
shortened integration timescale degrades
DM performance, as reflected in the dis-
crimination threshold from the psycho-
metric function (Fig. 2H). Therefore,
although recurrent structure must be
above a threshold value in order for the
network to perform winner-take-all selec-
tion, further increasing recurrent struc-
ture limits the gradual accumulation of
sensory evidence.

These findings illustrate a tension
between WM and DM function in a local
attractor network. There is a tradeoff be-
tween the two as recurrent structure JS is
varied: higher structure increases robust-
ness against distractors for WM (Fig. 2D),
but at the expense of shortening the integra-
tion timescale that degrades DM perfor-
mance (Fig. 2H). As we show and discuss
below, this performance tradeoff may be
ameliorated in a distributed circuit in which
local modules have different strengths of re-
current structure.

Persistent activity in a circuit model with local and
long-range connections
Visual WM recruits persistent activations that are distributed
across PPC and PFC (Chafee and Goldman-Rakic, 1998), which
are mediated by PPC–PFC interactions (Chafee and Goldman-
Rakic, 2000; Ferraina et al., 2002; Salazar et al., 2012; Dotson et
al., 2014). The distributed circuit model we developed is com-
posed of two reciprocally connected modules that can support
persistent activity independently (Fig. 2A,B). What are the roles
of local (within-module) versus long-range (across-module) con-
nections in supporting persistent WM states in this distributed
circuit model? We model visual stimuli as inputs to PPC (Fig. 3A,
Module 1) following the dorsal visual pathway (Felleman and Van
Essen, 1991) and the ordering of activations during bottom-up vi-
sual processing as well as during target selection (Buschman and
Miller, 2007; Ibos et al., 2013; Siegel et al., 2015), although some
experiments suggest that input can also rapidly reach PFC through
other pathways (Katsuki and Constantinidis, 2012a). Figure 3B
shows the model circuit response to a stimulus input to one PPC
population for different values of the recurrent structure JS (Fig.
3C). PPC responds vigorously to the stimulus and propagates this
signal to PFC. Following the offset of the stimulus (i.e., during the
WM delay), both PPC and PFC encode the stimulus through
selective persistent activity. On the basis of WM delay activity
alone, PPC and PFC therefore have similar WM activity, as ob-
served experimentally (Chafee and Goldman-Rakic, 1998; Qi et
al., 2010; Suzuki and Gottlieb, 2013).

We examined the roles of local and long-range structure in
determining persistent activity. Figure 3, B and C, shows how
different combinations of local and long-range parameters can
give rise to similar delay activity in the PPC and PFC modules. A
transient stimulus input can switch the state of the circuit from a
low-activity baseline state to a persistent and selective high-
activity memory state. The stable and persistent delay activity is a
reflection of the attractor dynamics in the combined PPC–PFC
circuit. Interestingly, these attractor dynamics are present in the
combined circuit even if the individual modules are not attractor
networks independently (Fig. 3C). This demonstrates that in a
distributed network, the observation of persistent activity in a
local area does not necessarily imply that the area is indepen-
dently capable of multistability. We then examined the relation-
ship between the firing rate, memory states, and structure in the
distributed circuit. In Figure 3D, the tradeoff in local and long-
range structure is made explicit for the PPC firing rate in a high
memory state. In conclusion, persistent activity in the PPC–PFC
circuit is supported by both local and long-range structure, with
the persistent activity states determined by the total (i.e., com-
bined local and long-range) structure.

Working memory with distractors in the parietal-prefrontal
circuit
The ability for a WM circuit to encode and maintain information
robustly while filtering out distractors is crucial for WM function
(Sakai et al., 2002; Suzuki and Gottlieb, 2013). Our distributed
cortical model is able to selectively encode a target stimulus in
WM in the presence of distractors (Figs. 4, 5). Within the PPC
and PFC modules, one neural population is selective to the target,

A B

C

Figure 4. Firing-rate dynamics in the PPC–PFC circuit during a WM task. A, Top, the blue trace shows the response of the
target-selective neural population in the PPC in response to a target presented at t � 0 ms, with no distractors. Red, orange, light
orange, and pink traces show the responses of the distractor-selective population to distractors presented at t�100, 150, 200, and
300 ms, respectively. Bottom, The cyan trace shows activity of the target-selective population in the PFC that receives the stimulus
indirectly through the long-range projections from the PPC, in the no-distractor condition. The other traces show the distractor-
selective population in response to distractors, as for PPC. However, these responses are not visible due to the strong filtering by
surround suppression within PFC. B, Temporal dynamics of the two suppressed populations in PPC and PFC around the time of
stimulus presentation (asterisks in A). C, Autocorrelation of the spontaneous firing rate shows the difference in fluctuation time-
scales �fluct between the PPC (127 ms, blue) and the PFC (438 ms, cyan). Firing rate traces were smoothed with a Gaussian window
of 20 ms width before calculating the autocorrelation, and dashed lines are exponential fits.
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and the other to the distractor. Figure 4A shows how the distrib-
uted circuit responds to target and distractor stimuli during WM.
Presentation of the target stimulus activates the selective popula-
tion in PPC, which transmits this information to the PFC module
via the feedforward long-range projections. Following stimulus
withdrawal, the target is encoded in PPC and PFC in persistent
activity. An intervening distractor, presented during the delay,
competes with the mnemonic target representation in the net-
work activity (Fig. 4A). If WM is robust, the response of the
distractor is transient, and target-coding persistent activity is
maintained.

Several notable observations of distractor processing in the
model are in line with single-neuron recordings from PPC and
PFC during visuospatial WM. First, distractor responses are
weaker than the target response (Falkner et al., 2010; Suzuki and

Gottlieb, 2013; Zhang et al., 2017). This
surround suppression is mainly due to the
cross-inhibition from the active target
population to the distractor population.
Second, the peak distractor amplitude
also decreases as the time of distractor
presentation relative to target increases
(Suzuki and Gottlieb, 2013). This results
from the network dynamics of the synap-
tic gating variables. At shorter distractor
onset times, the synaptic gating variables
of the target and distractor populations
have not reached their steady-state levels
(i.e., a high value for the target population
and a low value for the distractor popula-
tion). Therefore, the suppressive effect
from the target population on the distrac-
tor responses will slightly increase over
time, a consequence of the local network
having slow synaptic-gating variables. Fi-
nally, and most strikingly, distractor re-
sponses are markedly different in PFC
compared with PPC; PPC represents the
distractor strongly during its presentation
(Powell and Goldberg, 2000; Falkner et
al., 2010; Suzuki and Gottlieb, 2013),
while PFC strongly filters distractors
(Everling et al., 2002; Suzuki and Gottlieb,
2013). In addition to being indirectly ac-
tivated by the stimulus, the PFC module
has a higher local structure JS and thus
stronger recurrent dynamics than the
PPC. The stronger recurrence makes tar-
get encoding in PFC more robust against
transient distractor inputs, which are ef-
fectively filtered. From the dynamic sys-
tems perspective, the PFC module has a
wider basin of attraction than the PPC
(Fig. 2; Brunel and Wang, 2001; Wong
and Wang, 2006). To summarize, the
transient encoding of distractors is weaker
than target encoding, and weaker in the
PFC than in the PPC.

Single-neuron recordings have found
that WM activity in PPC and PFC gener-
ates surround suppression even on base-
line activity, in the absence of distractors
(Funahashi et al., 1989; Falkner et al.,

2010; Suzuki and Gottlieb, 2013). We analyzed differences be-
tween the PPC and PFC modules in terms of the dynamics of this
surround suppression during target encoding (Fig. 4B). Relative
to PPC, the surround suppression of the distractor population in
PFC is (1) stronger (i.e., toward a lower baseline activity) and (2)
more rapid (i.e., with a lower time constant). These features are
nontrivial, given that the stimulus directly drives PPC, whereas
PFC is activated via projections from PPC. They result from the
higher structure in PFC relative to PPC. Both of these features are
in line with single-neuron features of distractor suppression (Su-
zuki and Gottlieb, 2013).

The timescale of surround suppression can be contrasted to
the intrinsic timescale of activity fluctuations in the baseline state.
Primate cortex shows a hierarchical organization of this dynamic
feature, with intrinsic timescales increasing along the cortical hi-

A B
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Figure 5. Relationship between neural dynamics and behavioral performance during a WM task with distractors (colors corre-
spond to the schematic in Fig. 3A). A, Example of a correct, not distracted, trial. The target-selective population in PPC encodes the
target in WM following stimulus onset at t � 0 ms (top, blue), while the distractor-selective PPC population transiently but
strongly encodes the distractor following its presentation at t � 1300 ms (top, red). After distractor offset, feedback from the PFC
switches the PPC back to encoding the target, enabling a correct response at the end of the trial. The PFC (bottom) is activated by
the response of the PPC to the target, which is maintained in WM by the target-selective population in the PFC as well. Distractor
presentation causes a transient suppression of the delay activity in the neurons encoding the target (cyan), but the distractor is not
represented strongly (magenta) as it is in the PPC. B, Example of an error, distracted, trial. If the target precedes the distractor by
a short interval (100 ms in this example), there is an increased probability of the distractor representation overriding the target
representation, so that the distractor is encoded in persistent activity in both PPC and PFC (top, red; and bottom, purple). C, Sim-
ulated behavioral performance as a function of TDOA. Distractibility decreases with longer TDOA (blue). Simulated lesion of PFC
greatly increases distractibility (red). D, Effects of the removal of PFC¡PPC feedback. Absence of PFC feedback onto the PPC forces
the PPC to encode the last presented stimulus, leaving it vulnerable to distractors.
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erarchy, with dorsolateral PFC exhibiting a longer timescale than
posterior parietal area LIP (lateral intraparietal area; Murray et
al., 2014b). We examined whether this hierarchical organization
was consistent with the distributed circuit model we developed.
To this end, we calculated the autocorrelation of spontaneous
fluctuations in the PPC and PFC (Fig. 4C). We found that for the
given parameter set, the fluctuations timescale of PFC is 3.44

times slower than that of PPC, analogous to the findings of Mur-
ray et al. (2014b), who found a change by a factor of 2. Notably,
this ordering of intrinsic timescale (longer in PFC than PPC) is
opposite to the ordering of the surround-suppression timescale
(shorter in PFC than PPC). These contrasting time-scale order-
ings suggest that the difference between PPC and PFC cannot be
attributed to a fixed property of the neural response such as one

A B

C

Figure 6. PPC and PFC differentially encode accumulated evidence during perceptual DM. A, The theoretical accumulator (top), PPC (middle), and PFC (bottom) integrate sensory evidence as a
function of time and trial difficulty. Thick traces show an average over 60 trials for each difficulty condition, while thin traces in the accumulator show single trials. Traces corresponding to PPC and
PFC include both correct and error trials. B, The firing rate vs accumulator relationship is more categorical, with a steeper slope at zero accumulator value, in the PFC than in the PPC, which has a more
graded coding. The slopes at zero crossing are 0.13 and 0.19 for PPC and PFC, respectively (see also Hanks et al. (2015)). C, The relationship between firing rate in PPC and PFC and accumulator value
as a function of time is stable. The eight accumulator values (from purple to red) correspond to the horizontal axis in B.
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Figure 7. Dynamics of the distributed circuit model during a visuospatial DM task. A, Top, Target and distractor cells in the selection module receive stimulus inputs, integrate perceptual evidence,
and discriminate the inputs (marked by target discrimination time). Bottom, Following target discrimination in the selection module, the corresponding population of action cells is activated and
begins ramping (marked by onset time). When one of the action populations reaches a threshold of 40 Hz (black dashed lines), an overt response is triggered and a reaction time is registered. Green
(orange) traces correspond to easy (hard) trials. Target and distractor cells are shown in thick and thin lines, respectively. Dashed lines mark the target discrimination time in selection cells defined
as the time when the difference in firing rate of the two populations has reached 12 Hz. Dotted lines mark the onset time in action cells defined as the time when the firing rate of one of the
populations has reached 7 Hz. B, Target discrimination times in the selection module (top) and onset times in the action module (bottom) correlate with reaction times, both across and within
contrast conditions. Reaction times were split into quintiles for each contrast level. Only correct trials are shown. C, Psychometric and chronometric curves as a function of contrast for control and no
PFC feedback (right).
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area being more sluggish than the other. The suppression time-
scale reflects winner-take-all competition, which is stronger (i.e.,
faster) in the PFC because of its higher recurrent structure. On
the other hand, the intrinsic timescale reflects the timescale of
decay of the autocorrelation function of an area given a noisy
input, which for linear systems was shown to increase with larger
recurrent feedback (Chaudhuri et al., 2015).

Distractor-induced errors in working memory
We now examine the circuit’s dynamics in relation to behavioral
performance on a WM task with distractors (Fig. 5). An example
of a correct trial is shown in Figure 5A. The PPC first encodes the
target presented at t � 0 ms, which is subsequently encoded in
persistent activity in both PPC and PFC, and after 1300 ms a
distractor is presented to another population in the PPC. During
distractor presentation, the distractor-selective population in
PPC encodes the distractor strongly in its firing rate, while per-
sistent activity in the target-selective population is transiently and
mildly perturbed. The strong distractor response of the PPC is
due to two features of the model: stimulus input into PPC is
strong and PPC is a weak attractor network, so that the target-
selective population, while in the high memory state, does not
strongly suppress distractor cells. When the distractor population
has higher activity than target cells in PPC, the locus of attention
is transiently shifted to the distractor location (Bisley and Gold-
berg, 2003, 2006). Representation of the distractor in PPC is
thought to be functionally desirable, as it allows the PPC to flex-
ibly function as a saliency map (Bisley and Goldberg, 2010).

After the distractor stimulus is withdrawn, an interesting dy-
namic occurs in PPC: feedback from the PFC switches the PPC
back to encoding the target. This switch back to encoding the
target in PPC is a feature of distributed processing in the fronto-
parietal circuit. In an isolated local attractor network, a strong
distractor response would switch the state of the network from
encoding the target to encoding the distractor even after with-

drawal of the distractor stimulus (Fig. 2A; Compte et al., 2000;
Brunel and Wang, 2001; Murray et al., 2014a). In the distributed
circuit model, this switch back to encoding the target in PPC is
accomplished by feedback projections from PFC. The target cells
in PFC send excitation to the target population in PPC and inhi-
bition to the distractor population in PPC. Because PPC is a weak
attractor network, this combination of same-selectivity excita-
tion and cross-selectivity inhibition from PFC can effectively
switch PPC back to the target memory state. A single module such
as PPC can achieve distractor suppression (Fig. 2B), but feedback
from PFC makes the system resistant to distractors while simul-
taneously allowing for the distractor response to transiently sur-
pass the mnemonic target response in PPC (Fig. 5A; Suzuki and
Gottlieb, 2013). Single-neuron recordings in LIP have shown that
PPC networks can switch back to encoding the target in memory
after transiently but strongly encoding the distractor (Bisley and
Goldberg, 2003; Falkner et al., 2010; Suzuki and Gottlieb, 2013).
Furthermore, and consistent with the model, there is experimen-
tal evidence that long-range projections between PFC and PPC
produce both enhancement and suppression of activity of the
recipient cells (Chafee and Goldman-Rakic, 2000).

The PFC exhibits markedly different activity than the PPC in
response to distractors. The PFC is activated indirectly, via the
response of PPC to the stimulus. As with the PPC, information
about the target is maintained in the PFC by persistent activity in
the target-selective population. Subsequent distractor presenta-
tion causes a transient suppression of delay activity in the PFC.
The transient suppression of the target population in PFC is pri-
marily attributable to feedforward different-selectivity inhibition
from PPC, rather than local lateral inhibition from the distractor
population in PFC. This is consistent with the finding of Suzuki
and Gottlieb (2013) that target-selective neurons in the PFC can
show suppression by the distractor stimulus without distractor-
selective PFC neurons being strongly activated. In contrast to the
PPC, the distractor is not represented strongly in the PFC (Fig.

A B

Figure 8. Pathway-specific excitation-inhibition balance disruption and speed–accuracy tradeoff. The degree of balance disruption is quantified by the percentage of the total inhibition required
to balance excitation to a cell (100% corresponds to full balance). A, Speed–accuracy tradeoff. Reaction times decrease both as a function of contrast and the degree of balance disruption (top). The
fraction of correct trials increases as a function of contrast but decreases as a function of the degree of balance disruption (bottom). B, Error trials with (left) and without (right) pathway-specific
balance. For balanced trials (100% inhibition), errors are due to mis-selection from cells in the selection module and subsequent ramping of a population of cells in the action module (top). For
imbalanced trials (i.e., with excitatory bias; 40% inhibition), errors can be due to early ramping in cells in the action module before any divergence has begun in the selection module (bottom).
Dashed black lines mark the target discrimination time in the selection module, and dotted black lines mark the onset time in the action module.
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5A, bottom). The difference in distractor filtering across modules
arises because, first, the external input activates the PFC module
only indirectly and, second, the PFC module is modeled as a
strong attractor network, with increased local structure relative
to the PPC. By combining self-excitation and cross-inhibition,
this local structure allows the target population in the memory
state to maintain higher activity than the distractor population
throughout the delay. This is the mechanism for the robustness of
WM against distraction in the circuit.

We investigated the behavior of the PPC–PFC circuit during
error trials. An error trial occurs when the PFC module fails to
represent the target at the time of decision or readout, following
the delay period (at t � 3000 ms). During an error trial, the
distractor population fires at a higher rate than the target popu-
lation (Fig. 5B). This also corresponds to the locus of attention
being shifted to the distractor location (Bisley and Goldberg,
2003, 2006). Figure 5C shows that the proportion of errors, and
thus distractibility, decreases with greater time separation be-
tween target and distractor onset, a behavioral feature that is in
line with experimental findings (Suzuki and Gottlieb, 2013). As
with the timing dependence of the distractor amplitude in the

PPC (Fig. 4A), this time course of distractibility is due to the
transient dynamics of synaptic gating variables as they evolve
toward a steady-state attractor state encoding the target.

Prefrontal inactivation impairs robustness against distractors
In our model, we simulated inactivation or lesion of the PFC by
removing the PFC ¡ PPC feedback inputs to the PPC and char-
acterized its effects on neural activity and robustness of WM
against distractors (Fig. 5C,D). As shown in Figure 5D, PFC in-
activation renders the system vulnerable to distractors. Since the
PPC exhibits attractor dynamics as an independent local net-
work, the PPC can still encode the target into the delay period
through persistent activity, providing some capacity for WM
with only PPC engagement. However, without feedback from
PFC, the distractor stimulus switches the network to encoding
the distractor, which it continues to encode through the subse-
quent delay. This is in line with experiments finding that PFC
inactivation induces error responses to the distractor location
(Suzuki and Gottlieb, 2013). This demonstrates the key role of
PFC ¡ PPC feedback projections, in the intact circuit, in switch-
ing the PPC network back to encoding the target following

A B C

D E F

Figure 9. Amelioration of the tradeoff between DM and WM function in a distributed circuit with interareal differences in local recurrent structure. The local structures for Modules 1 and 2,
JS

1¡1 � J1 and JS
2¡2 � J2, respectively, are varied systematically to obtain the performance measures of “discrimination threshold” for DM and “robust stimulus range” for WM. A–F, In A–C,

the distributed circuit is endowed with both feedfoward and feedback connections, while in D–F the feedback connection from PFC is absent (i.e., JS
2¡1 � JT

2¡1 � 0). A, The discrimination
threshold increases with increasing J1, while largely insensitive to J2. B, The robust stimulus range increases with increasing J2 and with decreasing J1. C, The discrimination threshold decreases and
the relative stimulus range increases by varying the structure difference J2–J1 while keeping the total structure J1 � J2 � 0.76 nA fixed. Performance in both measures improves with J2 � J1 (i.e.,
an increase in local recurrent strength from Module 1 to Module 2). D, Without PFC feedback, the dependence of the discrimination threshold for DM on structure is similar to the control case.
E, Without PFC feedback, the robust stimulus range for WM is largely independent of J2 and the magnitude of the currents that render the system distractible is an order of magnitude below that of
the control case. F, Both the discrimination threshold and relative stimulus range (Eq. 17) decrease in the case without PFC feedback as the structure difference J2–J1 is varied while keeping the total
structure J1 � J2 � 0.76 nA fixed. Readout of the response from the PFC or PPC module is marked in dark or light green, respectively.
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distractor withdrawal (Fig. 5A). The resulting behavioral vulner-
ability to distractors is exemplified by an increase in the error rate
with respect to control (Fig. 5C). That PFC is not essential for
simple WM maintenance, but plays a key role in robustness of
WM and filtering of distractors, is in line with conclusions from a
range of experimental findings, both in monkeys (Suzuki and
Gottlieb, 2013) and in humans (Sakai et al., 2002; Feredoes et al.,
2011).

The model findings suggest two modes of operation during
WM. When PFC is engaged, the network can operate in a “re-
member first” regime, storing the initial stimulus and filtering
subsequent stimuli. When PFC is not engaged, PPC on its own
operates in a “remember last” regime, storing the location of the
most recent stimulus, which may also be functionally desirable
for a saliency map (Bisley and Goldberg, 2010). As previously
mentioned, the amplitude of the transient response to the dis-
tractor in PPC is lower compared with that of the target. When
the PFC is engaged, the peak distractor response is suppressed
(Fig. 5A, top) compared with when the PFC is inactivated (Fig.
5D).

Evidence accumulation during perceptual decision-making
Having characterized differential roles in WM for the two mod-
ules of our distributed circuit, we now examine how it performs
in perceptual DM tasks. As shown above in Figure 2, the recur-
rent structure JS of a local network shapes how it accumulates
perceptual evidence over time to guide a decision, which suggests
the PPC and PFC modules will show differential responses to
accumulated evidence during perceptual DM. To probe this is-
sue, we adapted a task paradigm used to study perceptual inte-
gration in the mouse (Brunton et al., 2013; Hanks et al., 2015).
Hanks et al. (2015) found that in the mouse cortex, frontal and
parietal areas differ in their representations of accumulated
evidence: parietal neurons encoded the accumulator value in a
graded fashion, whereas prefrontal neurons encoded the accu-
mulator value more categorically.

In the two-alternative forced choice paradigm of Hanks et al.
(2015), the subject receives auditory input consisting of a se-
quence of Poisson-distributed clicks emitted from the left and
from the right side, and the subject is rewarded for reporting
which side (left vs right) had the higher-frequency signal (Brun-
ton et al., 2013; Hanks et al., 2015). We model clicks as current
pulses whose onset is represented by a set of Poisson-distributed
times for each trial, where each trial is characterized by a rate pair
sorted according to difficulty. For instance, a 18 clicks/s (left):16
clicks/s (right) trial is “hard” whereas a 30:4 clicks/s trial is “easy.”
The click-triggered current pulses define the inputs to a theoret-
ical accumulator as well as to the circuit model via the first mod-
ule, the PPC (see Materials and Methods for details).

Figure 6A, top, shows the accumulator value as a function of
time, for example trials of varying difficulty. Positive accumula-
tor values correspond to the preferred tuning direction of a
neuron, and negative values correspond to the nonpreferred di-
rection. The difficulty of the trials is reflected in the slope of the
accumulator versus time plot, where a higher or lower slope in
absolute value corresponds to an easy or hard trial, respectively.
The trial-averaged firing rates of the PPC and PFC as a function of
time and difficulty are shown in Figure 6A, middle and bottom,
respectively. The difficulty of the trials is also reflected in the
instantaneous slopes of the firing rate, but, due to the attractor
dynamics and the coupling between the modules, the firing rates
in the PPC and PFC are not as linear as a perfect accumulator.

To examine how the theoretical accumulator value is repre-
sented in the firing activity of a neural population, we obtained an
explicit relationship between accumulator value and the firing
rate, following the approach of Hanks et al. (2015) (see Materials
and Methods). The relationship between firing rate and accumu-
lator value as a function of time is relatively stable for both the
PPC and PFC (Fig. 6C, top and bottom), which is similar to
empirical findings (Hanks et al., 2015). Importantly, the spacing
between the firing rates for different accumulator values is more
uniform in the PPC, reflecting a more quasi-linear encoding of
the accumulator value compared with the PFC. We obtained the
global relationship between firing rate in the PPC and PFC and
accumulator by averaging the plots in Figure 6C with respect to
time and scaling the ranges from 0 to 1 (Fig. 6B). We found that,
although the accumulator value is encoded in the firing rate for
both the PPC and PFC, there is a difference in slope between PPC
and PFC firing rates at zero accumulator value that reflects the
qualitative difference observed by Hanks et al. (2015): a more
categorical accumulator encoding in PFC than in PPC. Indeed, if
we map the dynamics of a local circuit to a phase (decision) space
where each axis represents one of the two decision variables
(Wong and Wang, 2006), increasing the recurrency JS of the cir-
cuit results in a shorter trajectory from the spontaneous state to
the threshold. This dynamic difference between PFC and PPC
manifests itself as a steeper slope for the firing rate of PFC as a
function of both time and the hypothetical accumulator, which
scales linearly with time. These results suggest that the differences
in recurrent structure between parietal and prefrontal circuits
may contribute to the differences in accumulator encoding be-
tween these cortical regions.

Perceptual decision-making across functional cell types
In the primate, the PPC and PFC are key cortical areas engaged in
perceptual DM tasks such as visual search and target selection
(Schall and Thompson, 1999; Thomas and Paré, 2007; Purcell et
al., 2010). Within frontoparietal circuits, saccadic target selection
involves at least two stages of processing: selection or discrimina-
tion of the relevant target among potential distractors; and prep-
aration of an action or response following that selection (Schall
and Thompson, 1999; Woodman et al., 2008). Single-neuron
recordings have found that signals related to these two stages are
represented heterogeneously across different functional cell types,
which are distributed across PFC and PPC circuits. Within the fron-
tal eye field (FEF) and other areas, two broad types of neurons—
visual cells and movement cells—show distinct dynamics during
visual target selection tasks.

The dynamics of visual and movement cells appears to reflect
the processes in perceptual selection and action preparation, re-
spectively (Schall, 2015). Visual cells respond strongly at stimulus
onset. After the initial visual transient, they distinguish target
from distractor through higher firing rates. Visual selection cells
have been characterized in LIP (Ipata et al., 2006; Thomas and
Paré, 2007), FEF (Thompson et al., 1996; Sato et al., 2001; Sato
and Schall, 2003), and the subcortical superior colliculus (McPeek
and Keller, 2002; White and Munoz, 2011). In contrast, move-
ment cells are not activated by stimulus onset, but their response
is tied to saccade onset. Their activity ramps in motor prepara-
tion, with an apparent firing-rate threshold that drives a saccade
to their associated movement field (Hanes and Schall, 1996;
Woodman et al., 2008). Movement cells are also found in FEF
(Hanes and Schall, 1996; Hanes et al., 1998; Woodman et al.,
2008) and superior colliculus (McPeek and Keller, 2002), but
appear to be much more sparse in LIP (Ferraina et al., 2002).
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We sought to test whether our distributed circuit model could
capture these differences between visual and movement func-
tional cells in frontoparietal circuits. In the context of saccadic
target selection, we associate Module 1 with selection (visual)
cells and Module 2 with action (movement) cells, and these func-
tional cell types may be differentially distributed across PPC and
PFC. Sensory input enters into selection cells (Module 1), as pro-
posed for a sensorimotor cascade (Purcell et al., 2010; Schall,
2013). Choice and reaction time are set by a firing-rate threshold
on action cells (Module 2; Hanes and Schall, 1996; Woodman et
al., 2008). The goal of the visual target selection task is to make a
saccade toward a target in the presence of distractors. The diffi-
culty of the task is dictated by the contrast, which reflects the
salience of the target with respect to that of distractors (Sato et al.,
2001; Thomas and Paré, 2007). High or low contrast corresponds
to low or high target-distractor similarity, respectively.

In the model, stimulus input activates selection cells (Fig. 7A).
When the stimulus appears, there is a pronounced visual tran-
sient in the firing rates of both target and distractor populations
in the selection module. The target-selective population receives
more input than the distractor population (the amount depend-
ing on the contrast; see Eq. 15), and the activity of the two pop-
ulations diverges due to competitive dynamics (Wong and Wang,
2006), resulting in a discrimination of the target from the
distractor. Due to the feedforward projection from the selec-
tion module to the action module, action cells receive stimulus
signals indirectly. In a correct trial, the target population
reaches the response threshold and a reaction time is recorded.
In a high-contrast condition, the reaction time is lower because
there is a larger difference in input current to the target and
distractor populations of the selection module (Wong and Wang,
2006). Thus, the contrast-dependent differences in input current
to the populations in the selection module along with the ampli-
fication of those differences due to the recurrent dynamics of
both modules eventually leads to a categorical choice in the ac-
tion cells.

The high-activity population, corresponding to the choice, is
consistent in both selection and action modules, but there are two
important differences in the dynamics between the modules.
First, the competitive dynamics in the action module, compared
with the selection module, result in a steeper firing-rate ramping
as a function of time (Fig. 7A). This is because the action module
has a higher recurrent structure JS, and stronger attractor dynam-
ics, than the selection module. Weaker structure in the selection
module enables better integration of perceptual evidence for tar-
get selection, as shown in Figure 2. Second, the pronounced tran-
sient activation of selection cells, due to the appearance of the
target, is not represented in the action module (Fig. 7A). This is
due to the pathway-specific E/I balance in the feedforward selec-
tion ¡ action projection (Eq. 7). Therefore, net inputs to the
action module reflect the difference of activity between the pop-
ulations in the selection module. Thus, an action-cell response
above baseline will be observed only when the activities in the
selection module have diverged, which is in line with theories and
evidence of “discrete flow” between selection- and action-related
stages in perceptual DM (Woodman et al., 2008). These results
suggest that the functional distinction between selection and ac-
tion cells arises from a difference in structure in the respective
modules and the existence of pathway-specific E/I balance onto
action cells.

Single-neuron recordings during visual search have char-
acterized how dynamics of functional cell types relate to reac-
tion times, through the target-distractor discrimination time in

visual cells and the onset time in movement cells (see Materials
and Methods). For visual cells, the target-distractor discrimina-
tion time correlates with reaction time, across and within search
difficulty conditions (Sato et al., 2001; McPeek and Keller, 2002;
Ipata et al., 2006; Thomas and Paré, 2007; White and Munoz,
2011). For movement cells, the onset time correlates with reaction
time (McPeek and Keller, 2002; Woodman et al., 2008; White and
Munoz, 2011). We computed analogous measures for selection and
action cells in our model. In line with experimental findings, we
found that reaction time correlates with discrimination time in
selection cells and with onset time in action cells, across different
contrast conditions as well as across reaction time variability within a
contrast condition (Fig. 7B). This implies that although selection
and action are distinct stages in perceptual DM, they are consistent
and reflect the feedforward nature of the two-module circuit
architecture.

We investigated the performance and speed of the distributed
DM circuit responses in Figure 7C. We found a monotonic de-
pendence on contrast for both measures (Roitman and Shadlen,
2002). Furthermore, we studied the role of PFC (action) feedback
on PPC (selection) cells. Interestingly, the absence of feedback
leads to more accurate and slower trials—a form of speed–accu-
racy tradeoff (Heitz and Schall, 2012; Wimmer et al., 2015)—
because less total structure improves the slow integration of
evidence (compare to Fig. 2H).

Pathway-specific E/I balance and speed–accuracy tradeoff
We have shown that action cells are activated only after the selec-
tion cells have diverged to select an option, because the projection
from selection to action cells exhibits pathway-specific E/I bal-
ance. To further characterize the role of pathway-specific E/I bal-
ance in the feedforward projection from selection to action cells,
we parametrically reduced the strength of feedforward inhibition
while holding constant the strength of feedforward excitation
(Eq. 16). For each level of inhibition, we computed a chrono-
metric and a psychometric plot: reaction time as a function of
contrast and accuracy as a function of contrast (Fig. 8A). As
feedforward inhibition decreases, reaction times decrease, but
so does accuracy. Both of these effects are more pronounced at
lower contrast values. Therefore, perturbing pathway-specific
E/I balance implements a speed–accuracy tradeoff during tar-
get selection.

We then examined how errors arise in the model under con-
trol balanced and reduced inhibition conditions. Figure 8B shows
representative single trials from the two conditions. In the con-
trol balanced condition, all errors arise due to mis-selection of the
distractor instead of the target in selection cells (Fig. 8B, left),
which is in line with single-neuron recordings finding mis-se-
lection in visual cells during search tasks (Thompson et al., 2005;
Shen and Paré, 2007; Trageser et al., 2008). In contrast, under
reduced inhibition a new type of error trial can occur (Fig. 8B,
right). Action cells prematurely select a response before target
selection has completed within the selection cells, causing errors
because the action module makes a decision for target or distrac-
tor in a quasi-random manner. Under reduced inhibition, when
the target and distractor selection cells are activated, but not yet
diverged, the action module receives a nonspecific net-excita-
tory input. This net-excitatory input can induce quasi-random
winner-take-all DM (Wong and Wang, 2006), giving rise to an
imbalance-dependent type of error. Our findings suggest that in a
healthy physiological state, the projection from Module 1 cells to
Module 2 cells should be in a state near E/I balance, because this
configuration produces errors consistent with electrophysiolog-
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ical recordings (Thompson et al., 2005; Shen and Paré, 2007;
Trageser et al., 2008).

Tradeoff amelioration in a distributed circuit
Having described how a two-module distributed circuit can cap-
ture key features of multiple electrophysiological findings related
to WM and DM, we return to the issue of the computational
advantages of such a distributed circuit compared with a single-
module circuit. In particular, we showed in Figure 2 that there is
a tradeoff in WM and DM performance in that by varying the
recurrent structure JS the one-module network exhibits increased
performance for one measure (e.g., robustness) and a decreased
performance for the other (e.g., discrimination). In Figure 9A–C,
we show that a distributed circuit composed of two modules with
local recurrent structures J1 and J2 can ameliorate the tradeoff in
the single-module circuit. As the difference in structures J2–J1 is
increased while preserving the total structure in the circuit, there
are increases in both performance measures, robustness in
WM, and discrimination in DM (Fig. 9C; see also Materials
and Methods). This amelioration occurs when there is a hier-
archical increase in local recurrent structure from Module 1
(PPC, selection) to Module 2 (PFC, action). We suggest that
this feature constitutes a desirable design principle for multi-
regional networks.

We also evaluated the importance of the feedback projection
from the second module to the first in Figure 9D–F. Without
top-down feedback, the tradeoff between WM and DM function
is not ameliorated: as the difference in structures increases,
DM discrimination performance increases (Fig. 7C) but ro-
bustness in WM decreases. Furthermore, the stimulus range
for which the system is robust to distractors is substantially
smaller than the control case, which is consistent with Figure
5D. These results suggest that distractor filtering in WM, and
the tradeoff amelioration in general, can be strongly regulated
by top-down feedback.

Discussion
In this study, we propose a parsimonious circuit model for dis-
tributed computations subserving WM and DM, two core cogni-
tive functions that recruit overlapping frontoparietal circuits. We
highlight a tradeoff that exists when optimizing the recurrent
structure for robustness against distractors in WM versus slow
integration of evidence in DM; the model developed here ame-
liorates this tradeoff by extension to two modules with a hierar-
chical increase in recurrent strengths. We found that across both
WM and DM paradigms, the circuit model captures a wide range
of salient, empirically observed features of neural activity in fron-
toparietal circuits. We summarize the findings of the model with
respect to the circuit architecture and its relationship to WM and
DM computations.

First, Module 1 (PPC or selection cells), which receives sen-
sory input (Felleman and Van Essen, 1991; Buschman and Miller,
2007; Ibos et al., 2013; Siegel et al., 2015), is a weak attractor
network. This property is beneficial so that PPC can transiently
encode distractors and function as a saliency map, and so that its
memory state can be effectively controlled by weak feedback pro-
jections from PFC (e.g., to switch the state back to encoding the
target following distractor presentation). In the context of per-
ceptual DM, Module 1 (selection cells) should be a weak attractor
network to support integration of perceptual evidence with a
long timescale to improve accuracy.

Second, Module 2 (PFC or action cells) is a strong attractor
network. In the context of WM, this property is functionally

beneficial because PFC can thereby provide robustness against
distractors, filtering out the effects of strong distractor responses
in PPC. In the context of DM, it is functionally beneficial for
action cells to be a strong attractor network because this enables
them to ramp quickly to threshold to drive choice following the
upstream target selection. This difference in recurrent structure
also predicts a difference in the representation of accumulated
value, which is more graded in Module 1 and more categorical in
Module 2.

Third, the modules are interconnected via reciprocal projec-
tions that are structured: net-excitatory between same-selectivity
populations and net-inhibitory between different-selectivity popu-
lations. The feedforward Module 1 ¡ Module 2 projection
should be structured to propagate signals for both WM and DM.
The feedback Module 2 ¡ Module 1 projection is especially im-
portant in the context of WM. This projection being structured
allows PFC to switch PPC back to encoding the target following
distractor presentation.

Differential roles for PPC and PFC in working memory
Although PPC and PFC are both involved in active WM mainte-
nance, converging evidence from a range of methodologies
suggests differential roles, with PPC associated with attentional
saliency and selection (Wardak et al., 2012, 2002) and PFC asso-
ciated with robustness of WM and filtering of distractors (Sakai et
al., 2002; Feredoes et al., 2011; Suzuki and Gottlieb, 2013). Our
distributed WM circuit model captures multiple key features
from these studies and suggests that the different roles of PPC and
PFC may be due in part to distinct dynamic behaviors arising
from their recurrent microcircuitry (Chaudhuri et al., 2015), as
suggested by electrophysiological recordings (Katsuki et al., 2014;
Murray et al., 2014b).

The model also proposes a key role for feedback from PFC to
PPC during distractor processing, namely to strengthen target
representations via feedback excitation and filter distractor rep-
resentations via feedback inhibition (Figs. 4, 5). In line with this
proposal, Feredoes et al. (2011) performed combined stimula-
tion-imaging experiments in humans and found a key role for
feedback from PFC to posterior areas during distractor filtering
to enhance target representations (for PFC-mediated enhance-
ment of WM capacity in PPC, see also Edin et al. (2009)). Along
these lines, we suggest that the effective strength of the lateral
inhibition in PPC is not a purely local property and can be flexibly
controlled by top-down (i.e., feedback) prefrontal engagement
(Falkner et al., 2010, 2013). Recording in LIP during visuospatial
WM, Falkner et al. (2010, 2013) found that surround suppression
of distractors, and target representation, are strengthened by top-
down cognitive modulation (e.g., by motivation). Our model
predicts that PFC inactivation should disrupt this modulation of
surround suppression in PPC. Furthermore, if PFC is inactivated
or the PFC–PPC feedback projection is very weak, the system can
operate in a ‘remember-last’ regime (Fig. 5D), whereas PFC en-
gagement can switch the system into a ‘remember-first’ regime
(Fig. 5A).

In modeling responses to intervening distractors (Figs. 4, 5)
we considered input to the PPC module only, which resulted in
highly attenuated responses in the PFC—to a greater extent than
the findings by Suzuki and Gottlieb (2013). Thus, in our model
we effectively investigated a subcircuit in the PFC that strongly
filters distractors and whose response is much smaller than the
more sensory-driven PPC circuit. The effects of simultaneous
external inputs to both modules and their interplay with the hi-
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erarchical recurrent interactions remains a topic for future com-
putational studies.

Evidence accumulation in the frontoparietal network
Gradual accumulation of perceptual evidence is reflected in DM-
related neuronal activity in frontoparietal circuits (Gold and
Shadlen, 2007; Schall, 2013; Brody and Hanks, 2016). Drift-
diffusion models (Usher and McClelland, 2001; Bogacz et al.,
2006; Purcell et al., 2010) as well as recurrent circuit models
(Wang, 2002; Wong and Wang, 2006) can account for the accu-
mulation process and subsequent ramping behavior in the neural
dynamics, including more discrete “jumping” modes (Miller and
Katz, 2010; Wang, 2012; Latimer et al., 2015; Lo et al., 2015). Our
model predicts that, due to the interareal differences in local
recurrent structure, representations of accumulated evidence are
more graded in PPC and more categorical in PFC, as supported
by single-neuron recordings (Hanks et al., 2015). Recent inacti-
vation studies found that even though PPC shows DM-related
signals, it does not play a causal role in perceptual DM (Erlich et
al., 2015; Katz et al., 2016). The random-dot motion and auditory
accumulation tasks where such deficits were observed are differ-
ent from the visuospatial attention task we modeled in Figures 7
and 8. Normal performance in such visual or visuospatial atten-
tion tasks has been shown to require LIP (Wardak et al., 2002,
2004; Goard et al., 2016; Licata et al., 2017). In rats, inactivation of
PPC disrupts the accumulation of visual but not auditory evi-
dence (Raposo et al., 2014). Furthermore, sensory signals could
reach areas such as the FEF (primate) or FOF (rodent) through
other pathways (Buschman and Miller, 2007; Katsuki and Con-
stantinidis, 2012a; Hanks et al., 2015) that are in principle capable
of evidence integration independent from LIP (Fig. 2G). Further-
more, it is unclear whether these results can be accounted for via
compensatory mechanisms and/or distributed processing within
a broader region in PPC that includes LIP. The issue of LIP in-
volvement in decision-making tasks should be addressed by
future experiments that carefully consider behavioral perfor-
mance, task design, species-specific differences, and the presence
of evidence accumulation in the neural activity of multiple simul-
taneously recorded areas (Pisupati et al., 2016; Hanks and Sum-
merfield, 2017).

Dynamics and localization of visual and movement cells
In the context of perceptual DM, the selection (Module 1) and
action (Module 2) cells in our model capture key dynamic fea-
tures of visual and movement cells, respectively, which have been
characterized in single-neuron recordings from LIP, FEF, and
superior colliculus (SC) (Thompson et al., 1996; Hanes et al.,
1998; Sato et al., 2001; McPeek and Keller, 2002; Ipata et al., 2006;
Thomas and Paré, 2007; Woodman et al., 2008; Schall, 2015).
Visual and movement cells in cortex may have distinct biophys-
ical properties (Cohen et al., 2009b), laminar distributions
(Pouget et al., 2009), and long-range projections (Gregoriou et
al., 2012). Our results suggest that both modules could represent
neural populations that are distributed across multiple areas
(e.g., visual cells in LIP/FEF/SC, movement cells in FEF/SC).

An important feature of our distributed circuit model is the
pathway-specific E/I balance in the feedforward projection from
selection to action cells. This E/I balance regulates a cascade of
activations across functional cell types and can be characterized
as discrete flow, since response preparation in action cells begins
only after target selection is completed in selection cells (Wood-
man et al., 2008). Pathway-specific balance thereby provides a
mechanism for discrete flow without requiring direct gating of

neuronal responses (Wang et al., 2004; Purcell et al., 2010; Yang
et al., 2016). The sensitivity of action cells to differences in up-
stream selection cells is related to a geometrical characterization
of neural dynamics, whereby some directions in neural state
space elicit responses, while those in the null space do not (Vogels
and Abbott, 2009; Kaufman et al., 2014; Li et al., 2016).

We disrupted pathway-specific E/I balance by systematically
decreasing the strength of feedforward inhibition onto the action
cells. A strongly imbalanced circuit produced a distinct type of
error: Action cells started ramping before the populations of
selection cells had diverged in activity (i.e., before selection
was accomplished). The imbalanced condition may capture
dynamics recorded from visual and movement cells in FEF
under speed-demanding compelled response paradigms (Stanford
et al., 2010). The modulation of feedforward inhibition in our model
resulted in a smooth tradeoff between speed and accuracy, a plausi-
ble mechanism among others (Bogacz et al., 2010; Stanford et al.,
2010; Heitz and Schall, 2012; Standage et al., 2014; Hanks et al.,
2015).

Limitations and future directions
Future studies can build upon and extend the present model to
address a number of important questions. One direction is to
extend the two-population discrete network studied here to a
quasi-continuous network in which neurons exhibit smoothly
varying tuning of a parametric stimulus variable (Compte et al.,
2000; Furman and Wang, 2008) to explore effects that depend on
the similarity and distance between distractors and targets held in
WM (Suzuki and Gottlieb, 2013; Murray et al., 2014a). An im-
portant question for future research is how to include sufficient
heterogeneity in the model so as to account for the dynamic
responses of individual cells but stable representations at the pop-
ulation level during WM tasks (Murray et al., 2017; Spaak et al.,
2017). Generalization to more than two populations would en-
able modeling of set-size effects in visual search tasks, whereby
the number of stimuli affects behavior and visual cell and move-
ment cell activity (Balan et al., 2008; Woodman et al., 2008; Co-
hen et al., 2009a). Extension to a spiking circuit model would
enable modeling the neural signatures of synchronization be-
tween PPC and PFC during cognitive processing (Pesaran et al.,
2008; Ardid et al., 2010; Salazar et al., 2012; Dotson et al., 2014).
Another extension of the model is the inclusion of a remapping
module for inhibitory control (Lo and Wang, 2016) that trans-
forms the visual representation of a target to a saccade goal away
from the target (i.e., an antisaccade; Gottlieb and Goldberg, 1999;
Munoz and Everling, 2004).

Our study suggests important design principles for construct-
ing multiregional neural circuit models of distributed cognitive
function, such as the interplay between long-range and local con-
nectivity in recurrent dynamics and computation, the roles of
specialized microcircuit properties across the cortical hierarchy,
and the implications of balanced excitation and inhibition in
long-range interactions. The parsimonious model studied here
may therefore instantiate features of a canonical cognitive circuit
useful for studying distributed computation in the brain.
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