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ABSTRACT
Recent theoretical accounts have proposed excitation and inhibition (E/I) imbalance as a possible mechanistic, network-
level hypothesis underlying neural and behavioral dysfunction across neurodevelopmental disorders, particularly autism
spectrum disorder (ASD) and schizophrenia (SCZ). These two disorders share some overlap in their clinical presentation
as well as convergence in their underlying genes and neurobiology. However, there are also clear points of dissociation in
terms of phenotypes and putatively affected neural circuitry. We highlight emerging work from the clinical neuroscience
literature examining neural correlates of E/I imbalance across children and adults with ASD and adults with both chronic
and early-course SCZ. We discuss findings from diverse neuroimaging studies across distinct modalities, conducted with
electroencephalography, magnetoencephalography, proton magnetic resonance spectroscopy, and functional magnetic
resonance imaging, including effects observed both during task and at rest. Throughout this review, we discuss points of
convergence and divergence in the ASD and SCZ literature, with a focus on disruptions in neural E/I balance. We also
consider these findings in relation to predictions generated by theoretical neuroscience, particularly computational models
predicting E/I imbalance across disorders. Finally, we discuss how human noninvasive neuroimaging can benefit from
pharmacological challenge studies to reveal mechanisms in ASD and SCZ. Collectively, we attempt to shed light on
shared and divergent neuroimaging effects across disorders with the goal of informing future research examining the
mechanisms underlying the E/I imbalance hypothesis across neurodevelopmental disorders. We posit that such
translational efforts are vital to facilitate development of neurobiologically informed treatment strategies across
neuropsychiatric conditions.
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Neural computations rely on balanced excitation and inhibition
(E/I), predominantly driven by glutamatergic and gamma-
aminobutyric acidergic (GABAergic) input, respectively. With-
out excitation, neurons would not fire. Without inhibition, the
brain would become epileptogenic. Excitation allows neurons
to respond to stimuli, while inhibition tunes their selectivity and
enables precise neural representations (1,2). E/I balance is
necessary for optimal neural signal formation, synchrony, and
transmission, which in turn support information processing
driving both simple and complex behaviors. Breakdowns in E/I
balance can have profoundly disabling behavioral effects.
Critically, clinical neuroimaging may offer in vivo measurement
of E/I balance integrity arising from specific patterns of
dysfunction (Table 1).

E/I imbalance has been hypothesized as one broad,
microcircuit-based alteration underlying brain dysfunction
across neurodevelopmental disorders, including autism spec-
trum disorder (ASD) and schizophrenia (SCZ) (see the
Supplement for operationalization and commentary regarding
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this hypothesis) (3–6). Across disorders, the underlying assump-
tion is that increased E/I ratio (i.e., increased excitation and/or
decreased inhibition) drives core symptoms. In ASD, high
epilepsy rates support this notion (7). In SCZ, the glutamate
hypothesis predicts that N-methyl-D-aspartate (NMDA) recep-
tor hypofunction on interneurons causes cortical hyperexcita-
tion, contributing to disease symptoms (8–11). ASD and SCZ
overlap in their clinical presentation (e.g., social dysfunction,
sensory abnormalities) (12), genetics, and neurobiology (13,14)
(Figure 1). However, clear dissociations in clinical phenotype
(e.g., hallucinations in SCZ, hand flapping in ASD), neural
alterations, and developmental timing of ASD and SCZ exist.
Recently, Gao and Penzes (15) discussed overlapping genetic
and molecular evidence implicating E/I imbalance across ASD
and SCZ. They highlighted genetic, postmortem, and animal
findings suggesting both glutamatergic and GABAergic circuit
dysfunction across disorders. These emergent findings
emphasize the importance of understanding cross-diagnostic
mechanisms affecting E/I balance. A cross-diagnostic
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Table 1. Consequences of Elevated Versus Reduced E/I Ratio

Excitation Inhibition Predicted Neural Consequences

Adaptive Adaptive Balanced E/I ratio. There is moderate spontaneous baseline activity. Neurons are excitable in response to incoming input
but also well tuned and capable of filtering out irrelevant input. Circuits are well organized and differentiated, capable
of synchronization and signal transmission. Circuits are able to support information processing underlying both simple
and complex behavior.

Increased or
Adaptive

Adaptive or
Reduced

Elevated E/I ratio. At baseline, circuits may exhibit high levels of random firing and be prone to seizure-like activity.
Evoked responses to incoming stimuli can be difficult to obtain. When present, however, evoked responses may
be exaggerated. Circuits are poorly tuned. They may respond to inappropriate stimuli. Functionally relevant
macrocircuitry is hypothesized to be poorly organized, resulting in inefficient and ineffective signal transmission and
information processing. Behaviorally, responses to sensory signals may be exaggerated and inappropriate, whereas
more complex behavior will be impaired.

Adaptive Increased Reduced E/I ratio. Spontaneous baseline activity is low, and evoked responses to incoming stimuli are limited or blunted.
Circuits will be narrowly tuned, to the extent that they are unable to respond to a full range of stimuli. Circuitry will be
poorly organized and integrated owing to limited opportunities for tuning and synchronization among signals.

E/I, excitation and inhibition.
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approach is consistent with the National Institute of Mental
Health Research Domain Criteria initiative (16), which aims to
identify neurobiological processes underlying symptom dimen-
sions spanning psychiatric disorders and testable across
analytic levels. Currently, testing within the Research Domain
Criteria framework is limited by few studies incorporating
multiple categorical diagnoses for direct comparisons and
absence of transdiagnostic symptom ratings in single-disorder
studies. In this article, we take a clinical neuroscience perspec-
tive, highlighting emerging evidence from human neuroimaging
studies testing markers of E/I imbalance in cortical micro-
circuits. Though no studies have examined E/I balance cross-
diagnostically, we evaluate evidence from parallel ASD and SCZ
literatures in considering shared and divergent pathways. We
discuss the problem whereby E/I imbalance becomes yet
another overly general hypothesis, with minimal mechanistic
precision or predictive power, for explaining diverse sympto-
matology (Supplement). To address this challenge, we highlight
where E/I imbalance contributes to specific symptoms that may
be constrained developmentally or neuroanatomically. Finally,
we argue that refining the E/I imbalance hypothesis should
occur cross-diagnostically with an ultimate goal of informing
novel treatments targeting related pathways across neuro-
developmental disorders.
MAGNETIC RESONANCE SPECTROSCOPY

Proton magnetic resonance spectroscopy (1H-MRS) measures
total voxel metabolite levels (combined across multiple cellular
and extracellular compartments) correlating with neural struc-
ture and metabolic alterations (17). Across ASD and SCZ,
studies report diagnosis-related alterations in N-acetylaspar-
tate, GABA, glutamate, and glutamine levels (normalized
to water or creatine). Particular interest has developed in the
glutamine/glutamate combination (Glx), as glutamate released
during neurotransmission is taken up by glia and converted to
glutamine (18). No uniform increase in Glx or decrease in
GABA exists across all patients with ASD or SCZ. However,
where present, metabolic alterations provide indirect support
for cross-diagnostic E/I imbalance. Moreover, 1H-MRS metab-
olite levels, particularly degree of hyperglutamatergia, correlate
with symptoms, are affected by medication, and, in SCZ,
change with illness progression.
Biological
In SCZ, increased glutamine in dorsal anterior cingulate
cortex (ACC) is associated with more psychotic symptoms (19)
and worse neuropsychological performance in patients with
first-episode SCZ (20). Higher ACC glutamine/creatine ratio is
associated with more negative symptoms in patients with
early-course (EC) SCZ and correlates with reduced likelihood
of remittance (21). Glutamate levels are consistently elevated
across striatal (22), frontal, prefrontal, and ACC (23) regions in
medication-naïve patients with first-episode SCZ, and medial
prefrontal cortex (mPFC) Glx is elevated in unmedicated
patients (24). Increased temporal and frontal Glx levels relate
to particularly severe auditory hallucinations (25), while
increased inferior parietal white matter Glx relates to symptom
severity and psychotic exacerbations (26). Higher frontal
Glx/creatinine ratio may predict poorer antipsychotic medica-
tion response (27). In medicated patients with SCZ, glutamate
is decreased (28) or unchanged (19) in ACC, decreased in
PFC (29), and possibly decreased in hippocampus (28,30).
Glx is also reduced in ACC (31) and mPFC of patients with
chronic SCZ but not patients with EC-SCZ or ultra-high-risk
SCZ (32). Thus, measured glutamate and glutamine levels,
while elevated early in illness, may normalize over illness
progression, be sensitive to medication status, and specifically
relate to clinical profiles and treatment response. However,
possible confounds of long-term polypharmacy remain unre-
solved (33).

In ASD, less is known about metabolite changes over
illness duration, in part because ASD onset occurs before
the age when 1H-MRS studies have been implemented.
However, ACC Glx is increased in children with ASD (34) but
reduced and predictive of greater symptom severity in adults
with ASD (35). These findings point toward a possible pro-
gressive shift, as observed in SCZ. Overall, metabolic alter-
ations may correlate with particular symptoms in ASD and be
more regionally specific than in SCZ. For example, one study
found that decreased ACC GABA/creatine ratio corresponded
to more impaired social functioning (36), whereas another
found no overall changes in ACC GABA but lower GABA/
creatine ratio with more severe symptoms (37). Whereas
reduced GABA characterizes auditory and motor regions
(38,39), GABA/creatine ratios may be unaffected in visual
regions yet aberrantly linked to visual performance (40).
Glutamate is increased in ACC (41) and putamen (42) but
decreased in medial temporal lobe (41) and unchanged in
Psychiatry May 15, 2017; 81:848–861 www.sobp.org/journal 849
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Figure 1. Considering the complexity of excitation and inhibition (E/I) imbalance effects on the cortical microcircuit level in the context of shared versus
distinct neurobiology in schizophrenia and autism spectrum disorder. (A) Several genes associated with gamma-aminobutyric acidergic and glutamatergic
functioning have been implicated across both autism spectrum disorder and schizophrenia (166–168). (B) The expression of such genes, and the time point at
which their expression might go awry, can differ across development. Developmental differences in gene expression affecting E/I balance could contribute to
variations in both neural circuitry alterations and ultimate clinical phenotypes. Different colors conceptually highlight distinct time points and time-dependent
patterns of gene expression that may relate to disturbances in each disorder. (C) Alterations, such as deletions or duplications, of genes altered in
schizophrenia and/or autism spectrum disorder can result in microcircuit dysfunction, characterized by imbalance in E/I neurotransmission, as a result of
changes at E-E, E-I, or I-E synapses (169). (D) The nature of E/I disruption can take any of several different forms (left panel), which in turn would
contribute to variable baseline and task-evoked abnormalities in excitatory and inhibitory neural functions measured during neuroimaging. (E) Based on the
complex interactions between the processes depicted in panels (A–D), differential neuropathology may emerge from many of the same underlying alterations
and may be characterized by regional variability in the degree to which E/I balance is disturbed (105), thereby differentially impacting neural computations at
the system level (170). GABA, gamma-aminobutyric acid; Glu, glutamate. [(D) Adapted with permission from Logothetis (171). Surface models adapted with
permission from Glasser et al. (172).]
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caudate and thalamus (42). Glx is increased in auditory cortex
(43), decreased in basal ganglia, and unchanged in dorso-
lateral PFC (DLPFC) and parietal regions (44). Increased ACC
glutamine (36) may relate to symptom severity, specifically
emotion recognition deficits. Thus, metabolic evidence for E/I
imbalance in ASD points to regional variability. Nonetheless,
the direction of disruption in ASD tends toward cortical
disinhibition, particularly in childhood. Future cross-diagnostic
work should verify the extent and functional consequence
of altered GABA and glutamate levels using convergent
850 Biological Psychiatry May 15, 2017; 81:848–861 www.sobp.org/jo
multimodal tools. Specifically, studies collecting multimodal
imaging data alongside 1H-MRS will inform mechanistic inter-
pretations of the E/I imbalance hypothesis.
ELECTROPHYSIOLOGY AND
MAGNETOENCEPHALOGRAPHY

Modulation of local neuronal activity affects broad electrical neural
activity profiles, during rest and task states, as measured with
electroencephalography (EEG) and magnetoencephalography
urnal
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Figure 2. Neuroimaging paradigms tapping into excitation and inhibition
balance in sensory and associative circuits. (A) Visual evoked potential
paradigm, in which electroencephalography (EEG) is recorded over occipital
cortex to contrast-reversing checkerboard stimuli. This paradigm results
in a canonical waveform (http://webvision.med.utah.edu/), wherein successive
peaks reflect glutamatergic and gamma-aminobutyric acidergic activity. It has
been used in both schizophrenia and autism spectrum disorder. (B) Surround
suppression stimuli, wherein activation elicited by a grating-filled annulus is
suppressed owing to lateral inhibition in the context of parallel (top right
panel), but not perpendicular (bottom right panel), surround. Seymour et al.
(127) showed that patients with schizophrenia exhibit reduced surround
suppression effects (left panel). This type of paradigm is also being used
in studies of individuals with autism spectrum disorder. BOLD, blood
oxygen level–dependent; fMRI, functional magnetic resonance imaging.
[(B) Adapted with permission from Seymour et al. (127).]
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(MEG). Greater excitation [and higher glutamate levels (45)]
is associated with larger event-related potentials (ERPs) (i.e.,
peaks in brain activity time-locked to stimuli). Increased E/I
ratio is also reflected in the power spectra of spontaneous,
oscillatory brain activity, particularly in high-frequency
(gamma; 30–90 Hz) bands (46) [but see (47)]. Neural disinhi-
bition yields higher baseline activity across frequency bands
and failure of event-related activity to modulate, adapt, or be
suppressed over repeated events (48). Pharmacological mod-
els altering GABAergic and glutamatergic neurotransmission
confirm that excitatory and inhibitory signaling contributes
significantly to high-frequency oscillations (49,50). Thus,
higher baseline excitation and altered stimulus-related evoked
responses can result from increased excitation, decreased
inhibition, or a combination of the two. Though oscillatory
findings discussed below largely describe high-frequency
abnormalities, phase-amplitude coupling must be considered
(51). Whether gamma abnormalities are downstream conse-
quences of primary low-frequency (e.g., delta, theta) deficits
should be explored empirically. Additionally, when comparing
gamma-related ASD and SCZ findings, the influence of
developmental changes in gamma rhythms on observed
differences between child and adult samples must be consid-
ered (52).

In SCZ, both resting and stimulus-evoked gamma-band
alterations are well documented and indicative of cortical
disinhibition (53,54). The prevailing view indicates SCZ is
characterized by elevated baseline gamma alongside reduced
stimulus-evoked gamma response. The latter set of findings
could either indicate reduced task-related excitatory signal
(55) or result from an interaction between baseline alterations
and task responses, resulting in difficulty detecting task-
related signal given high baseline power (56). Heightened
resting gamma power (57,58) supports a hyperexcited base-
line state. Additionally, resting oscillatory connectivity
(increased delta, theta, low beta, and gamma) is altered in
SCZ. Delta and gamma hyperconnectivity is most pronounced
in EC-SCZ (59), whereas alpha connectivity is decreased
regardless of illness duration (59,60).

Task-based EEG has provided further support for elevated
E/I ratio in SCZ. Amplitude of visual evoked potentials (VEPs)
characterizes visual stream integrity (Figure 2A), where specific
early peaks reflect glutamatergic and GABAergic functioning.
VEP alterations in SCZ are well established (61). For instance,
a recent study comparing binocular VEPs with summed VEPs
under monocular deprivation found reduced VEP plasticity,
indexed by this binocular effect (62). Other visual EEG and
MEG evidence offers convergent support for increased E/I
ratio. Deviance detection during low-level visual feature (ori-
entation) perception is reduced in SCZ (63), suggesting
inhibitory failure over repeated stimuli. Furthermore, increased
sustained gamma power to visual gratings characterizes
schizoaffective disorder (64), wherein mood disturbance coin-
cides with psychosis. Even medication-naïve patients with EC-
SCZ show atypical EEG patterns during tests of perceptual
closure. These findings include widespread elevations in MEG
responses, poor response modulation with stimulus repeti-
tions, decreased high gamma (60–120 Hz) power, and reduced
gamma-beta coupling (65,66). Collectively, EEG findings in
SCZ suggest abnormal excitatory activity spreading, failure to
Biological
gate (inhibit) responses, impaired high-frequency oscillation
generation, and failure to downregulate task-irrelevant activity
during visual perception. These deficits reflect neural
disinhibition.

Strong evidence for atypical auditory processing and higher
cognitive functioning in SCZ (67,68) also implicates E/I imbal-
ance (69–71). Reduced auditory steady-state responses
(ASSRs) entrained to periodic stimuli are a hallmark SCZ
feature (72,73). This alteration corresponds to reduced gamma
phase locking, suggesting GABAergic dysregulation (72).
Indeed, GABA levels are associated with theta, alpha, and
beta activity gating during auditory tasks (74). However, in a
separate study, higher induced gamma power during 40-Hz
ASSR was found in SCZ and was associated with more
auditory hallucinations (75). The direction of alterations may
be a function of NMDA transmission (76). Reduced frontocen-
tral alpha activity, alongside increased parietal-occipital alpha
activity, suggests deficient long-range inhibition of task-
irrelevant auditory information, perhaps driving SCZ-related
Psychiatry May 15, 2017; 81:848–861 www.sobp.org/journal 851
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perceptual alterations (77). Desynchronization of event-related
alpha activity during auditory perception is also reported in
ultra-high-risk SCZ (78). Reduced gamma response and phase
locking in similar tasks characterized patients with EC-SCZ
and ultra-high-risk SCZ who had not converted (79). These
results suggest that electrophysiological markers of E/I imbal-
ance may precede full-blown illness, indicating neural markers
could be effective for tracking risk. This idea is further
supported by findings of altered ASSR in unaffected relatives
(80,81). Mechanistically, premorbid damage to superior tem-
poral gyrus cortical thickness may underlie downstream alter-
ations in gamma oscillations during auditory entrainment (82).

Finally, during higher order cognition, patients with SCZ
show reduced gamma activity during working memory, which
requires active maintenance of information over time. Reduced
task-evoked gamma activity over DLPFC correlates with
reduced GABA, measured with 1H-MRS (83), suggesting a
shared mechanism. Interestingly, repeated transcranial mag-
netic stimulation (TMS) over DLPFC can normalize excessive
gamma oscillations and improve cognitive performance (84).
Combined, these findings imply a specific link between
disinhibition and impaired cognition and a possible therapeutic
approach for targeting alterations associated with E/I
imbalance.

In ASD, resting-state EEG and MEG findings paint a
somewhat different picture. As in SCZ, resting delta, theta,
and gamma oscillatory power is elevated (85). However, in
contrast to decreased resting alpha connectivity in SCZ, in
ASD, resting-state alpha activity is increased (86). Moreover,
though long-range alpha connectivity is increased in ASD,
signal complexity in this range is decreased, which could
reflect decreased predictability, regularity, and repeatability of
neuronal signals (87). Thus, resting-state EEG signatures of E/I
imbalance across ASD and SCZ may be, at least in part,
dissociable, particularly for alpha.

Task-based ERP signatures of E/I imbalance have been
characterized in genetic syndromes causing ASD and impact-
ing excitatory or inhibitory synaptic functioning. Individuals
with NLGN4X gene mutations, expressed in inhibitory and
excitatory synapses (88), were more likely to exhibit ASD and
showed abnormal ERP to auditory deviance detection. In
fragile X syndrome, both auditory and visual ERP amplitudes
were increased (89). The latter finding suggests hyperexcitable
neural responses, most prominent in audition, in a genetic
syndrome with known glutamate disruption and causing ASD.
In idiopathic ASD, task-based EEG correlates of E/I imbalance
have been tested less extensively. Largely using low-level
sensory tasks, these studies yield mixed results. During tactile
perception, target finger stimulation activates both its repre-
sentation in somatosensory cortex and representations of
adjacent fingers due to local intracortical connections. Cortical
inhibition controls neural response amplitude to adjacent
finger stimulation. In ASD, MEG revealed local hypoconnec-
tivity and enhanced inhibition comparing individual versus
concurrent tactile stimulation of adjacent fingers (90,91),
suggesting reduced E/I ratio. In audition, reduced gamma
phase locking during ASSR parallels SCZ findings (92).
Though this potential E/I imbalance biomarker has been
studied less extensively in ASD, unaffected relatives show
similar phase locking decreases (93). Thus, as in SCZ, ASSR
852 Biological Psychiatry May 15, 2017; 81:848–861 www.sobp.org/jo
alterations may be useful for tracking risk. Mechanistically,
there are cortical thickness deficits in superior temporal
regions in ASD, but these tend to be greater in adults than
in children (94). Therefore, whereas cortical thickness reduc-
tions may precede illness onset and E/I imbalance in SCZ,
ASSR gamma abnormalities in ASD may be driven by a
different mechanism, such as auditory cortex GABA reduc-
tions (described above).

In the visual domain, ASD findings are mixed. Two studies
suggest elevated E/I ratio, showing reduced steady-state
gamma and orientation-specific contextual modulation and
increased neural noise to VEP stimuli (95,96). Conversely, in
parallel studies of subjects with ASD and control subjects,
higher peak gamma frequency and lower orientation discrim-
ination thresholds (both associated with more precise circuit
tuning and greater inhibition) were found in both individuals
with ASD and neurotypical individuals with fewer autistic traits
(97,98). While these findings may seem contradictory, they
could suggest that the direction of E/I imbalance plays a role in
determining clinical phenotype and functional impairment.
Findings in neurotypical individuals with more autistic traits
may relate to state versus trait effects or to severity level
needed to unmask task-evoked deficits. Findings showing that
modulation of MEG response to repeated sounds was
reduced only in individuals with ASD with clinical auditory
hypersensitivity (99) support this hypothesis. Overall, patterns
of E/I imbalance may manifest more heterogeneously in ASD
than SCZ. Specifically, disinhibition may be constrained to
distinct processes and circuitry, perhaps underlying discrete
phenotypes in ASD subsets.

FUNCTIONAL NEUROIMAGING

Functional magnetic resonance imaging (fMRI) offers an addi-
tional tool for mapping neural correlates of E/I disruption,
exploring their regional constraints, and testing functional
correlates of computationally based circuit predictions. This
section highlights a selection of recently published articles on
fMRI. It is not meant to be exhaustive or exclusionary. Rather,
it highlights illustrative studies reporting findings that can be
computationally modeled, translated, or integrated in multi-
modal neuroimaging approaches.

Resting-State fMRI

Resting-state functional neuroimaging (rs-fMRI) enables map-
ping the macro-organization of large-scale functional brain
networks (100–103). Network-level disruptions should be
prominent when local microcircuit function is disrupted, as
precise E/I balance is critical for formation and maintenance of
organized local and large-scale circuits. In that sense, rs-fMRI
reflects large-scale network consequences of local circuit
disruptions (104,105). In SCZ, studies have mapped resting
network dysconnectivity, which may relate to altered E/I
balance. Recent work identified altered resting thalamocortical
connectivity, including reduced thalamic-prefrontal-cerebellar
connectivity and elevated thalamic-sensory-motor connectiv-
ity (106–109). Similarly, resting hyperconnectivity characterizes
association cortices, including the frontoparietal control net-
work, but not sensory networks (105). Bidirectional findings
suggest cortical disinhibition specifically altering top-down
urnal
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control, thereafter differentially affecting communication
between thalamus and frontal and/or sensory regions. Cortico-
striatal functional connectivity alterations also support neural
disinhibition in SCZ (110). There are known inhibitory gluta-
matergic projections onto dorsal striatum, which exhibits
altered functional connectivity in EC-SCZ (101,111). In healthy
adults, elevated mPFC glutamate is associated with greater
resting functional connectivity between mPFC and both
thalamic and striatal regions (112). This finding converges with
increased glutamate (and elevated E/I balance) being func-
tionally linked with striatal and thalamic rs-fMRI connectivity
differences in SCZ.

Echoing the 1H-MRS literature, illness progression repre-
sents an important emerging variable in SCZ rs-fMRI studies.
This picture is complicated by treatment confounds: studies in
EC-SCZ report rs-fMRI alterations, but the direction of
reported effects varies depending on treatment. For example,
in unmedicated SCZ, hippocampus and precuneus connec-
tivity is decreased (113). In EC-SCZ, altered effective con-
nectivity across default mode network nodes are reported
(114), consistent with data-driven studies (111). Other studies
report that PFC hyperconnectivity is specific to EC-SCZ,
whereas PFC connectivity reductions characterize chronic
SCZ (115). Hyperconnectivity in medication-naïve EC-SCZ
was most prominent in PFC circuits and default mode regions
and predicted positive symptom severity (111). Interestingly, in
patients with EC-SCZ followed longitudinally for 12 months,
this functionally “hyperconnected” state attenuated and cor-
related with symptom improvements after treatment initiation
(111). This effect underscores the need to consider illness
duration, medication status, and symptom severity during
study participation when assessing E/I imbalance markers.
Symptom improvement with PFC connectivity normalization
suggests potential therapeutic value of normalizing E/I imbal-
ance. However, precise upstream mechanisms driving this
neuroimaging observation remain unknown. Combining ani-
mal, pharmacological, and computational studies will be
critical to mechanistically characterize these findings.

Fewer rs-fMRI studies have examined functional connec-
tivity in ASD as a possible neural correlate of E/I imbalance.
Adults with ASD, most closely age matched to SCZ samples,
show local hyperconnectivity in superior and middle frontal
gyrus, local hypoconnectivity in fusiform and middle temporal
gyri, and no alterations in long-range connections (116). A
second study in adults with ASD also found no evidence for
whole-brain alterations in connectivity. Conversely, however,
evidence here supported decreased functional connectivity in
specific frontal and temporal brain regions (117), with no
evidence for hyperconnectivity. Another study reported
frontal-striatal connectivity reductions, alongside alterations
in the developmental trajectory of striatum-putamen connec-
tions, where these connections increased with age in subjects
with ASD (118) but declined with age in control subjects.

In children with ASD, a mixed pattern of long-range hyper-
connectivity and hypoconnectivity has been identified, with
directionally disparate alterations across regions and networks
(119–122). Importantly, all studies suggested relationships
between connectivity alterations and severity of social symp-
toms. Alterations in resting-state connectivity were also asso-
ciated with change in symptoms and adaptive impairments
Biological
over time (102). This work collectively emphasizes the impor-
tance of considering age and developmental stage, both when
designing studies and when comparing findings across stud-
ies and across disorders where onset ages differ. Moreover, it
highlights the need to examine correlations between rs-fMRI
connectivity and continuous measures of symptomatology
transcending diagnostic category. In general, functional con-
nectivity measured via rs-fMRI may most specifically differ-
entiate subjects with SCZ from control subjects, whereas it
may be less reliably altered in ASD, particularly by adulthood.
If this hypothesis holds, it suggests dissociation in the
expression of E/I imbalance–related neural alterations for
large-scale networks in clinical populations with notable differ-
ences in core phenotypes.
Task-Based fMRI

Few task-based fMRI assays of E/I imbalance have been
conducted in ASD or SCZ, despite behavioral studies sug-
gesting alterations in processes modulated by E/I balance
(123–126). In SCZ, orientation-specific context modulation
during visual perception was reduced, suggesting inhibitory
mechanism failure (Figure 2B) (127). Hyperactivation, consis-
tent with disinhibition, was observed in auditory cortex follow-
ing presentation of single-tone stimuli (128). Higher glutamate
levels (measured at rest by 1H-MRS) were associated with
greater inferior parietal blood oxygen level–dependent (BOLD)
signal during auditory cognitive control in subjects with SCZ,
whereas this correlation was negative in control subjects (129).
These task-based findings converge with the E/I imbalance
hypothesis in SCZ, with the third study suggesting a functional
link between task-related hyperexcitability and altered gluta-
mate neurotransmission.

In ASD, task-based neuroimaging studies testing for E/I
imbalance support disinhibition in local cortical circuits. During
visual motion perception, greater activation and faster hemo-
dynamic decay was seen in visual area 5/middle temporal
visual area, suggesting reduced inhibitory modulation (130).
During passive language processing, negative BOLD
responses were reduced in ASD, suggesting failure of inhib-
itory processes to induce regional deactivation (131). In control
subjects, reduced orientation-specific surround suppression,
reliant on lateral inhibition in visual receptive fields, was
associated with more autistic traits (132). Thus, task-based
fMRI studies suggest that neural disinhibition may be asso-
ciated with autism symptomatology in a continuous fashion,
spanning into nonclinical populations.

In both the ASD and the SCZ literature, there is a significant
need to expand approaches using task-based fMRI to test for
E/I imbalance. In particular, fMRI may be used best in
conjunction with EEG. Given the poor spatial resolution of
EEG alongside clues from EEG studies that disinhibition may
be regionally specific in ASD, multimodal studies including
fMRI may be particularly important for testing E/I imbalance in
ASD. Our ability to draw conclusions from fMRI studies will be
maximized by (and may be of only incremental return without)
simultaneous or parallel EEG and/or MEG studies to explain
how oscillatory activity and neurotransmitter alterations con-
tribute to BOLD signal abnormalities (133). This process will be
key to understanding how task-based neuroimaging findings
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reflect specific alterations in excitatory and inhibitory neuro-
transmission and ratio.

LOOKING FORWARD: PHARMACOLOGICAL, TMS,
GENETIC DISORDERS, AND COMPUTATIONAL
STUDIES INFORMING PROBES OF THE CROSS-
DIAGNOSTIC E/I IMBALANCE HYPOTHESIS

All of the reviewed neuroimaging work, while critical to our
understanding of E/I imbalance across ASD and SCZ, cannot
ultimately reveal mechanisms by which E/I balance becomes
disrupted (Supplement). Inconsistencies across the SCZ and
ASD literatures likely reflect remaining uncertainty regarding
underlying disease mechanisms. However, particularly for
SCZ, defined models of synaptic and microcircuit dysfunction
have been helpful in articulating predictions of both functional
impairment and potential treatment targets. Viewing SCZ as
resulting from disrupted glutamatergic activity affecting only
specific forms of inhibition yields testable hypotheses regard-
ing which neural functions ought to reflect E/I imbalance and
which ought not to. For example, SCZ genes tend to be
expressed throughout cortex and affect both somatostatin
and parvalbumin inhibitory cells (134). Somatostatin cells are
more densely expressed in superficial cortical levels and
synapse on dendritic shafts and spines of pyramidal neurons,
whereas fast-spiking parvalbumin interneurons are expressed
in deeper cortical layers and target pyramidal neuron cell
bodies (135,136). Therefore, whereas reduced parvalbumin
interneuron cell function results in increased resting and
reduced evoked gamma oscillations (137), altered somatosta-
tin cell function may contribute to functional hyperconnectivity
as these cells spread horizontally across neighboring cortical
columns.

With this backdrop, pharmacological neuroimaging in SCZ
has identified potential mechanisms driving E/I imbalance that
affect described neuroimaging assays. In particular, transient
administration of the NMDA receptor (NMDAR) antagonist
ketamine to healthy control subjects increases global func-
tional connectivity (138), similar to observations in EC-SCZ
(111). Moreover, acute ketamine induces aspects of the SCZ
clinical phenotype and results in reduced task-dependent
activation and connectivity during spatial working memory
(138,139). Interestingly, a study combining ketamine admin-
istration with other potential glutamate release modulators
suggests that, at least with ketamine, connectivity changes
occur owing to NMDAR blockade rather than downstream
glutamatergic effects (140). This finding is consistent with
arterial spin labeling studies on this topic (141). It may have
important implications for identifying drug targets related to
altered NMDAR signaling in SCZ, which likely contribute to E/I
imbalance (142).

While pharmacological models in healthy control subjects
have provided important tests of mechanistic predictions for
explaining the SCZ disease state, no parallel model exists as
yet for ASD. In ASD, gaps in our knowledge regarding the
underlying pathology (143) make articulating clear directional
hypotheses more difficult, such that research has pursued
testing E/I imbalance in a more haphazard way. At this time,
no pharmacological agent has been identified that replicates
either key features of the ASD phenotype or hallmark
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experimental findings. Thus, ASD research lags behind SCZ
in its utilization of pharmacological models to test precise
mechanistic hypotheses.

Across disorders, pharmacological trials in patient popula-
tions have been helpful in informing whether manipulating E/I
balance directly can alter neural signals and clinical presenta-
tion. To this end, in ASD, long-term bumetanide administra-
tion, which decreases intracellular chloride and reinforces the
inhibitory effect of GABA, enhanced BOLD activation during
emotional face perception (144). Acute administration of
benzodiazepines, which are GABA agonists, increased occi-
pital and prefrontal BOLD signal in subjects with SCZ viewing
emotional images, although it decreased signal in the same
regions in control subjects (145,146). These pharmacological
studies are consistent with alterations in GABAergic and
glutamatergic functioning across ASD and SCZ. They further
implicate disinhibited cortical circuits that can be normalized
using specific pharmacological agents. By pairing drug trials
with bench work to understand specific targets and action
mechanisms for successful pharmacological agents, we stand
to learn more about both treatment and underlying dysfunc-
tion. Interestingly, recent work suggests that cognitive training
can normalize neural markers of altered auditory gating in
SCZ, suggesting nonpharmacological interventions may also
be successful in modulating and normalizing neural responses
associated with cortical disinhibition (147).

Another complementary experimental method for dissect-
ing the described neuroimaging effects involves TMS. TMS is
a noninvasive technique that induces electrical current in the
brain. This current causes depolarization of neurons and
generation of action potentials (148), which can produce a
hyperexcitable state. Indeed, repeated TMS over right DLPFC
in healthy control subjects increased network connectivity
among areas supporting working memory function (149). This
finding suggests that induced cortical disinhibition can result
in alterations both in cognition reminiscent of SCZ and in its
underlying neural circuitry. Modeling SCZ and ASD disease
states in healthy control subjects using TMS will inform our
understanding of underlying mechanisms, particularly as
related to clarifying affected brain regions.

Yet another important approach involves studies in neuro-
developmental disorders caused by known genetic alterations
in which a substantial proportion of affected individuals have a
clinical phenotype closely resembling idiopathic ASD or SCZ.
Compared with pharmacological modeling, which has been
more illuminating for SCZ, work in rare genetic disorders thus
far has offered more insight into the neurobiology of ASD.
Phelan-McDermid syndrome is a genetic disorder caused by
haploinsufficiency of SHANK3, a gene encoding a scaffolding
protein at excitatory synapses (150). Affected patients have
many features of ASD. Using clinical neuroscience techniques
to test for specific markers of E/I imbalance in this and other
genetic populations (e.g., fragile X, Rett syndromes) may
increase understanding of the pathway from genetic abnor-
mality, to neural microcircuit alteration, to differences in neural
signaling detectable via neuroimaging, to specific clinical
phenotypes. The 22q11.2 syndrome presents an interesting
population for probing experimental correlates of E/I imbal-
ance, as both ASD and SCZ are common in individuals with
this syndrome (151,152). Thus, studies in 22q11.2 syndrome
urnal
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could be useful in teasing apart which aspects of E/I imbal-
ance correspond to which aspects of shared or divergent
clinical phenotypes among individuals sharing a known
genetic alteration.

Finally, emerging computational psychiatry focuses on
biophysically grounded modeling of neural networks. This field
has begun to generate mechanistic behavioral and neuro-
imaging predictions relevant for SCZ and ASD (153–158). This
approach incorporates the relevant synaptic detail necessary
to generate downstream neural predictions after upstream
perturbations to parameters regulating E/I balance. For
instance, a computational model altering inhibitory signals in
auditory cortex replicates auditory entrainment deficits
observed in patients with SCZ (159). Computational modeling
studies have also demonstrated that elevating E/I balance in a
microcircuit capable of working memory computations results
in a specific pattern of behavioral errors (2). This hypothesized
“disinhibited” behavioral and neural regime was confirmed
experimentally following NMDAR antagonism (142,158).
Finally, a computational perturbation simulating disinhibition
in a large-scale functional connectivity model predicted neural
activity patterns confirmed in resting-state scans from patients
with SCZ. Critically, observed alterations in patients were
diagnosis specific, not seen in either control subjects or
patients with bipolar disorder (104,105). In ASD, computational
models reducing circuit inhibition (160) have been useful in
modeling predictions for perceptual alterations identified in
behavioral studies (161) but have not yet modeled neuro-
imaging predictions. Importantly, however, biophysically
grounded models are capable of modeling synaptic compen-
sations that can generate cross-diagnostic predictions.

Collectively, these cross-disciplinary methods highlight how
pairing pharmacological manipulations in healthy and affected
individuals with studies in rare genetic disorders, TMS, and
computational modeling can offer promising approaches to
test specific mechanistic hypotheses of E/I balance disrup-
tions across disorders (Figure 3). Such studies will help inform
how E/I imbalance may be pervasive versus localized to
specific brain regions; relate to specific aspects of perceptual,
social, and cognitive task performance altered in SCZ and/or
ASD; and disrupt particular features of underlying brain
activation and connectivity.
SUMMARY AND FUTURE DIRECTIONS

This review highlights recent multimodal neuroimaging work
across ASD and SCZ implicating alterations in E/I balance—a
complex property of microcircuits that can take many forms
and result from many underlying alterations (Supplement).
However, as knowledge increases regarding the basic cellular,
molecular, and circuit-level alterations in SCZ and ASD, very
specific predictions associated with particular patterns of E/I
imbalance may be generated and tested using multimodal
neuroimaging techniques (Figure 1). More importantly, as
evidence emerges regarding patterns of E/I imbalance
in vivo, results can be translated back to animal models,
where E/I imbalance can be replicated and pharmacological
agents affecting GABAergic and/or glutamatergic signaling
can be brought into preclinical trials. This work has begun in
ASD using rodent models of monogenic causes of ASD. Both
Biological
insulin-like growth factor (162) and GABA receptor agonist
arbaclofen (163) administration rescue the clinical phenotype
in ASD mouse models. These initial findings are already being
translated to targeted clinical trials of new treatment com-
pounds (164).

Despite a clear need for translational research to further
dissect the nature and extent of E/I imbalance across ASD and
SCZ, some consistent themes emerged across this complex
neuroimaging literature (e.g., progressive effects in SCZ apparent
in both 1H-MRS and rs-fMRI studies). Additionally, correlations
between neural metrics of E/I imbalance and symptom levels
were often reported. This pattern suggests that the magnitude of
E/I imbalance may relate to clinical severity in a graded manner.
That said, the fMRI, 1H-MRS, and EEG/MEG literatures remain
equivocal regarding the precise spatial pattern and direction of E/I
alterations, particularly in ASD (165). Cross-diagnostic compari-
sons must be interpreted cautiously because they emerge from
independent literatures. However, it is likely that, within and
across ASD and SCZ, regional specificity of affected circuits,
cell and receptor types impacted, and developmental time
frame for altered E/I imbalance contribute to heterogeneity in
the clinical phenotype.

Several specific important areas for future study emerged.
New cross-diagnostic research, taking a Research Domain
Criteria approach in clinically well-characterized groups, will be
impactful. The aim of this review has been to determine whether
we garner added precision about the presence and conse-
quence of E/I imbalance when we consider its relationship to
specific cognitive, behavioral, and psychiatric variables across
diagnoses. Differences observed over the course of illness in
SCZ and between children and adults with ASD point to the
importance of understanding whether E/I alterations are tempo-
rally stable or fluctuate over development. Some proactive
strategies may help address this important challenge for
cross-diagnostic studies, such as the following: 1) careful
characterization of typically developing E/I balance patterns
across development; 2) capitalization on high-risk samples and
unaffected relatives with shared biomarkers; 3) studies mapping
state versus progressive trait markers that change over time
(e.g., with development, treatment, disease progression, or
symptom exacerbation or remittance); and 4) systematic match-
ing of age and medication history in adult ASD and SCZ
samples. Next, given variable patterns of E/I disturbance (or
lack thereof) across cortical regions and neuroimaging plat-
forms, multimodal studies are needed to clarify the precise
spatial patterns of E/I balance disruptions across brain areas in
SCZ and ASD (e.g., combined EEG and fMRI applied cross-
diagnostically). Also, focus on rare genetic variants associated
with both disorders (e.g., 22q11.2, CNTNAP2) and conferring
known impact on synaptic function may constrain genetic,
biological, and phenotypic heterogeneity within study samples.
This approach will enable more power to reveal causal mech-
anisms. Finally, given the general lack of specificity and robust-
ness of most findings to date, computational modeling and
pharmacological challenges can help to test specific exper-
imental hypotheses and precise circuit mechanisms related to
putative E/I imbalance in SCZ and ASD. As discussed further in
the Supplement, collectively embracing these cross-diagnostic
challenges is critical to guiding targeted treatment development
for disorders of neurodevelopment.
Psychiatry May 15, 2017; 81:848–861 www.sobp.org/journal 855

www.sobp.org/journal


Figure 3. Computational and pharmacological studies informing excitation and inhibition (E/I) imbalance cross-diagnostically. (A) Computational modeling
of microcircuit E/I balance predicts neural activity that is disrupted when E/I ratio is elevated (i.e., disinhibition induced via reduction of feedback inhibition,
shown with red arrow). This computational manipulation generates predictions relevant for E/I balance both at rest and during task states (104,139).
(B) Pharmacological models, such as N-methyl-D-aspartate receptor antagonism via ketamine, known to disrupt E/I balance can be used to test
computational models to determine whether well-understood in vivo disruptions result in predicted alterations in neural activity. (C) Findings from patients
with schizophrenia and/or autism spectrum disorder can then be compared with results generated by computational and pharmacological models to gain a
better understanding of the underlying mechanisms driving the disease state. This iterative “computational psychiatric” framework can help deepen insight
into the links between circuit mechanism, neural system deficits, and symptoms across diagnoses (173). BOLD, blood oxygen level–dependent. [Adapted with
permission from Anticevic et al. (174).]
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