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Schizophrenia is complex neuropsychiatric syndrome 
that profoundly affects perception, belief, and cognition 
(Lewis & Moghaddam, 2006) and is likely caused by dis-
tributed brain dysconnectivity (Stephan, Baldeweg, & 
Friston, 2006). Schizophrenia remains a leading cause of 
disability worldwide (C. J. L. Murray, Lopez, Harvard 
School of Public Health, World Health Organization, & 
World Bank, 1996) and is inadequately treated by avail-
able therapies (Krystal et al., 2003). This is especially true 
for disturbances in motivation and cognition that often 
accompany schizophrenia (Barch, 2005; Barch & Ceaser, 
2012; Barch & Dowd, 2010). Studies of its pathophysiol-
ogy initially focused on characterizing striatal dopaminer-
gic hyperactivity (Guillin, Abi-Dargham, & Laruelle, 2007; 
Kapur, Mizrahi, & Li, 2005; Kegeles et al., 2010; Laruelle, 
Abi-Dargham, Gil, Kegeles, & Innis, 1999; Laruelle et al., 
1996). This focus is now complemented by studies that 

have characterized altered glutamate neurotransmission 
in schizophrenia (Anticevic, Gancsos, et al., 2012; Corlett 
et al., 2006; Krystal & Moghaddam, 2011). An influential 
mechanistic hypothesis proposes a possible disruption in 
the balance of excitation and inhibition in the cortical 
microcircuitry resulting from hypofunction of the 
N-methyl-D-aspartate glutamate (NMDA) receptor (Krystal 
et  al., 2003), which might affect cortical computations, 
thereby leading to large-scale dysconnectivity (Uhlhaas, 
2013). However, such cellular-level hypotheses have yet 
to be systematically linked across levels of analyses to 
explain the complexity of schizophrenia symptoms. This 
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Abstract
Schizophrenia is an illness with a remarkably complex symptom presentation that has thus far been out of reach of 
neuroscientific explanation. This presents a fundamental problem for developing better treatments that target specific 
symptoms or root causes. One promising path forward is the incorporation of computational neuroscience, which 
provides a way to formalize experimental observations and, in turn, make theoretical predictions for subsequent 
studies. We review three complementary approaches: (a) biophysically based models developed to test cellular-level 
and synaptic hypotheses, (b) connectionist models that give insight into large-scale neural-system-level disturbances 
in schizophrenia, and (c) models that provide a formalism for observations of complex behavioral deficits, such as 
negative symptoms. We argue that harnessing all of these modeling approaches represents a productive approach for 
better understanding schizophrenia. We discuss how blending these approaches can allow the field to progress toward 
a more comprehensive understanding of schizophrenia and its treatment.
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objective is particularly daunting because it requires a mul-
tilevel understanding of complex phenomena across levels 
of experimental inquiry: from synapses, to cells, to neural 
circuits, to large-scale systems, and, ultimately, complex 
behavioral disturbances observed in schizophrenia.

One way to better understand how these disturbances 
scale across analysis levels involves blending clinical 
behavioral and neuroimaging studies with advances in 
computational and theoretical neuroscience. We argue 
that such a multidisciplinary/translational clinical science 
approach is vital to understand the staggering complexity 
of this neuropsychiatric syndrome. The fields of compu-
tational and theoretical neuroscience recently have made 
advances toward understanding neuroscientific observa-
tions across levels of analysis. For instance, in computa-
tional studies, researchers have articulated the synaptic 
and microcircuit mechanisms that produce complex cor-
tical oscillations (X.-J. Wang, 2010), such as gamma 
rhythms. In a related set of investigations, researchers 
have proposed a theoretical foundation for how unique 
receptor contributions, at different timescales, can pro-
duce persistent and recurrent neuronal firing that gives 
rise to computations that support higher-level cognitive 
processes, such as working memory (WM). Furthermore, 
in system-level computational-modeling studies, research-
ers have proposed the role of specific neurotransmitters, 
such as dopamine (DA), for tuning of prefrontal cortical 
networks during cognitive operations (Cohen & Servan-
Schreiber, 1992; Durstewitz, Kelc, & Gunturkun, 1999; 
Durstewitz & Seamans, 2002). Mathematical formalisms 
of behavior and brain-behavior relationships, such as 
associative learning or reward processing, have eluci-
dated specific behavioral parameters that contribute to 
complex learning processes (Maia & Frank, 2011).

Consequently, such models generated predictions 
regarding specific disruptions that may occur in psychiatric 
illness (Maia & Frank, 2011), thereby informing experi-
ments on neural data. Computation at each of these analy-
sis levels is thought to be profoundly affected in 
schizophrenia, ranging from microcircuit disruptions 
(González-Burgos & Lewis, 2012; Lewis, Curley, Glausier, & 
Volk, 2012; Lewis & González-Burgos, 2008), to  system-level 
perturbations in neurotransmission or  connectivity 
(Anticevic, Cole, et  al., 2014; Lisman, 2012; Lisman, Pi, 
Zhang, & Otmakhova, 2010; Woodward, Karbasforoushan, 
& Heckers, 2012), to complex behavioral alterations that 
include deficits in learning and motivation (Gold et  al., 
2012; Gold, Waltz, Prentice, Morris, & Heerey, 2008). 
Bridging each level of modeling with appropriate levels of 
experimental inquiry can provide a powerful interplay 
between experiment and theory to inform understanding 
of schizophrenia at a given level of analysis.

We propose that such an integrative computational 
modeling effort that spans levels of inquiry should 

encompass three broad complementary approaches, 
which span this continuum (see Fig. 1 for a conceptual 
illustration of computational modeling and experimental 
interplay across levels of analysis). The first approach 
uses biophysically based models that are informed by 
cellular-level detail to help constrain both preclinical and 
human pharmacological experiments targeting this level 
of analysis. The second uses connectionist models that 
inform neural-system-level hypotheses in schizophrenia 
but do not always commit to the same level of neurobio-
logical detail as do biophysical models. Such models 
have the unique capacity to constrain neuroimaging stud-
ies that focus on both task-based activation and connec-
tivity alterations in schizophrenia (Yang et al., 2014). And 
the third approach uses models of behavior and brain-
behavior relationships that can characterize specific 
parameters that may govern complex symptoms in 
schizophrenia. The use of appropriate modeling across 
levels of analysis allows theory to interface with distinct 
experimental approaches, including (a) pharmacological 
(Krystal et al., 2003), animal electrophysiology, and other 
preclinical studies (Arnsten, 2011; Homayoun & 
Moghaddam, 2007; Moghaddam & Adams, 1998; Simen, 
DiLeone, & Arnsten, 2009; Verma & Moghaddam, 1996; 
M. Wang et  al., 2013) that target synaptic and cellular-
level questions; (b) connectivity- and task-based neuro-
imaging experiments in schizophrenia (Fornito, Yoon, 
Zalesky, Bullmore, & Carter, 2011; Fornito, Zalesky, 
Pantelis, & Bullmore, 2012; Repovs & Barch, 2012; 
Repovs, Csernansky, & Barch, 2011) designed to probe 
neural-system-level abnormalities; and (c) state-of-the-art 
behavioral and imaging studies designed to characterize 
behavioral and symptom disturbances in schizophrenia 
(Gold et al., 2012; Gradin et al., 2011; G. K. Murray et al., 
2008; Schlagenhauf et al., 2014).

We argue that precisely this type of multilevel approach 
has the potential to capture the complexity of schizo-
phrenia (or other neuropsychiatric conditions more 
broadly). Specifically, different levels of modeling will 
provide more or less interface with different levels of 
experimental analysis, which allows for the interplay of 
theory and experiment uniquely relevant to a given level 
of observation. We suggest that a given computational 
model is not (and should not be) designed to explain all 
experimental observations (such a perfect model would 
be the human central nervous system itself). Instead, we 
argue that different levels of modeling are appropriate for 
different questions and the scope of experimental obser-
vation in a given study. Therefore, we discuss evidence 
across the three broad levels of modeling previously 
described and how they shed light on understanding of 
schizophrenia. This is not to say that all computational 
models fall within one of the three categories; instead, 
we use this “division” to highlight the utility of some 
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models to interface with different levels of experimental 
inquiry.

First, we focus on models developed with explicit bio-
logical constraints guiding their design. We present evi-
dence from basic physiology, clinical, and pharmacological 
experiments that interface with this level of modeling. 
Second, we turn to connectionist models designed to 
inform neural-system-level observations (although many 

generate complex behavioral predictions). We specifi-
cally focus on the role of DA in schizophrenia, its rele-
vance for tuning prefrontal cortex (PFC) function and 
connectivity, and its role in executive deficits in this ill-
ness. This level of modeling has guided cognitive neuro-
science studies in schizophrenia, although it does not 
specifically rely on stringent biological constraints. Last, 
we briefly describe mathematical models of complex 
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Fig. 1. Conceptual illustration of computational modeling and experimental interplay across levels of analysis. The utility of computational mod-
eling, particularly in the study of schizophrenia, is its ability to inform a given level of experimental study. Because we study abnormalities in 
schizophrenia from the cellular level (Lewis, Hashimoto, & Volk, 2005), at the neural-system level (Anticevic, Repovs, Corlett, & Barch, 2011), and, 
ultimately, at the level of behavior (Gold et al., 2012), we have to utilize our modeling approaches to best fit the experimental framework. For 
instance, as reflected in the bottom panels, cellular-level experiments use techniques and produce measurements that are best captured using mod-
els that contain the necessary level of biophysical realism. Such models can, for instance, inform synaptic processes that may govern the microcircuit 
phenomena under study, such as neural oscillations (X.-J. Wang, 2010). In turn, a number of neuroimaging studies have focused on character-
izing system-level disturbances in schizophrenia using both task-based paradigms (Barch & Ceaser, 2012) and resting-state functional connectivity 
approaches (Fornito, Zalesky, Pantelis, & Bullmore, 2012). Such system-level cognitive neuroscience experiments are best informed by models that 
capture the relevant detail and complexity of larger-scale neural systems (as reflected in the middle panels). Such models can perhaps better inform 
the role of systemic pharmacological manipulations on BOLD fMRI (Honey & Bullmore, 2004) or can be used to predict results of functional con-
nectivity studies in schizophrenia (Yang et al., 2014). Finally, schizophrenia produces complex and devastating behavioral symptoms, which can be 
measured via increasingly sophisticated behavioral paradigms (Gold et al., 2012; Waltz et al., 2009; Waltz & Gold, 2007). Here, the use of models 
that formalize complex behavior (as reflected in the top panels) can provide a powerful tool to quantitatively examine a given behavioral process 
in patients (e.g., reinforcement learning; Maia & Frank, 2011) as well as brain-behavior relationships (Gradin et al., 2011; G. K. Murray et al., 2008; 
Schlagenhauf et al., 2014). BOLD fMRI = blood-oxygen-dependent-level functional MRI; EEG = electroencephalography; MRS = magnetic resonance 
spectroscopy; PET = positron emission tomography; MEG = magnetoencephalography; E = excitatory cells; I = inhibitory cells.
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behavior and brain-behavior relationships and how such 
models have informed understanding of schizophrenia 
symptoms. We argue that continued refinement of each 
of these approaches, and their continued interplay, repre-
sents an important objective in the field of clinical 
neuroscience.

Biophysically Based Models—Toward 
Understanding Circuit-Level Effects of 
Synaptic and Cellular Dysfunction

Biophysically based modeling refers to the modeling of 
neural circuits at the level of neurons and synapses on 
the basis of physiological characterization of neuronal 
and synaptic dynamics. In such models, the temporal 
evolution of neuronal and synaptic states is typically 
modeled through sets of differential equations. Such 
models can be grounded in basic neuroscience and con-
strained by multiple types of anatomical and physiologi-
cal data from animal experiments (X.-J. Wang, 2010). The 
biophysical basis of the model specifically allows 
researchers to perturb certain parameters through the 
putative mechanisms of disease processes. In turn, 
hypotheses directly generated by such perturbation can 
be tested via pharmacological manipulations that target 
this very mechanism (Krystal et al., 1994). Because such 
models can possibly produce neural activity and behav-
ior, they can be related to human neuroimaging and psy-
chophysics in healthy and clinical populations. 
Biophysically based models could also inform rational 
design of pharmacotherapies, given that current medica-
tions for schizophrenia are predominantly designed to 
act at the synaptic and cellular levels (although there is 
evidence that targeted transcranial magnetic stimulation, 
TMS, could possibly alleviate some symptoms; Hoffman 
et al., 1999), thereby providing a theoretical platform for 
clinical translation that integrates findings across both 
basic and clinical neuroscience.

However, the level of biophysical detail included in 
the model critically depends on the questions under 
study. For example, models of a single synapse that 
include subcellular signaling pathways can be used to 
examine hypotheses about the pre- versus postsynaptic 
loci of dopaminergic dysregulation in schizophrenia (Qi 
et al., 2010). Conversely, a model of a cortical microcir-
cuit may be composed of thousands of spiking neurons 
whose internal dynamics could be simplified to include 
only key channels and receptors (as opposed to more 
complex intracellular signaling pathways) to study phe-
nomena that occur at the cortical network level, such as 
oscillations or persistent activity. Furthermore, biophysi-
cally based models are appealing in the study of func-
tional consequences of neuropathology because 
perturbations can be implemented at the synaptic and 

neuronal levels. Modeling this detail currently has limita-
tions in its application to system-level disturbances in 
schizophrenia; for instance, large-scale connectivity defi-
cits in schizophrenia may at present be out of reach by 
biophysically based models, although in recent emerging 
studies, researchers have started to make strides in this 
direction (see later discussion; Yang et  al., 2014). 
However, modeling synaptic phenomena in biologically 
plausible ways has the potential to link levels of analysis 
(e.g., synapses to network dynamics or even behavior).

Moreover, in recurrent networks, dynamical and func-
tional consequences of a perturbation can be counterin-
tuitive and difficult to parse without an explicit model. 
For example, neuromodulators, such as DA, change con-
ductances on multiple sites in the prefrontal microcircuit 
(Seamans & Yang, 2004). In such instances, modeling this 
detail can strengthen intuition about the types of experi-
ments that are needed to elucidate complex synaptic 
deficits in schizophrenia that involve a confluence of 
multiple neurotransmitter pathways whose complex 
dynamics cannot be readily intuited. Here, we focus on 
the role of biophysically based models to explain the 
dynamics of cortical microcircuits and their dysfunction 
in schizophrenia.

Microcircuit alterations in 
schizophrenia

Optimal cortical function depends on the balanced inter-
action of pyramidal excitatory (glutamatergic) and inhibi-
tory (gamma-Aminobutyric acid, GABAergic) neurons 
(Shadlen & Newsome, 1994). Disruptions of this balance 
can have drastic behavioral consequences (Marin, 2012; 
Yizhar et  al., 2011) relevant to serious mental illness, 
including schizophrenia and autism. Although microcir-
cuit alterations in schizophrenia are complex, in many 
studies, researchers have converged on interneuron dys-
function as a key component of its pathophysiology 
(Marin, 2012; Nakazawa et al., 2012). An emerging hypoth-
esis suggests a possibly parsimonious mechanism—
namely, a deficit in the interaction between excitatory and 
inhibitory neurons (Benes, McSparren, Bird, SanGiovanni, 
& Vincent, 1991; Lewis et al., 2012; Lewis, Hashimoto, & 
Volk, 2005; Lewis & Moghaddam, 2006; Lewis, Volk, & 
Hashimoto, 2004; Marin, 2012). This hypothesis postulates 
a possible lack of inhibitory drive from GABA interneu-
rons onto pyramidal neurons that results in disinhibition 
of pyramidal cells (Lewis et al., 2012; Marin, 2012). One 
line of evidence for abnormalities in this mechanism 
comes from postmortem investigations of dorsolateral 
PFC (DLPFC) in schizophrenia. These studies consistently 
have shown reduced levels of the messenger RNA for the 
67-kilodalton isoform of glutamic acid decarboxylase 
(GAD67, encoded by GAD1), a key factor in optimal 
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GABA levels, in the DLPFC of patients with schizophrenia 
(for review, see Lewis et al., 2005).

Pharmacological models of schizophrenia have offered 
complementary evidence. One such approach is to use 
NMDA receptor antagonists (e.g., ketamine), which tran-
siently, safely, and reversibly induce cardinal schizophrenia 
symptoms in healthy volunteers. Leading hypotheses 
regarding ketamine’s effects on neural function also pro-
pose cortical “disinhibition” (Greene, 2001; Homayoun & 
Moghaddam, 2007; Kotermanski & Johnson, 2009; Krystal, 
Anand, & Moghaddam, 2002; Krystal et  al., 2003). 
Specifically, it has been hypothesized that ketamine, and 
possibly other NMDA receptor antagonists, exerts its effects 
via preferential blockade of NMDA receptors on GABAergic 
interneurons in cortical microcircuits (Kotermanski & 
Johnson, 2009; for a detailed discussion, see Greene, 
2001). Furthermore, proper functioning of GABA neurons 
has been linked to optimal WM function purportedly by 
virtue of GABA’s role in exerting lateral inhibition and 
synchronizing persistent firing of pyramidal cells in the 
DLPFC (Rao, Williams, & Goldman-Rakic, 2000). Therefore, 
it has been hypothesized that a disruption of excitation/
inhibitory balance between pyramidal and GABA neurons 
may be one crucial pathophysiological mechanism oper-
ating in schizophrenia relevant to observed cognitive defi-
cits and possibly system-level alterations in this illness 
(Anticevic, Cole, et al., 2014). Precisely this level of detail 
can be incorporated into biophysically based models to 
guide inferences regarding disruptions in more complex 
phenomena that can serve as biomarkers, such as cortical 
oscillations (Lisman, 2012).

Interpreting biomarkers in relation to 
modeling: Cortical oscillations

Understanding the mechanistic basis of neurophysiologi-
cal biomarkers for schizophrenia could ultimately aid 
diagnosis and drug development by mapping the links 
between specific synaptic disruptions and network-level 
measurements. Biophysically based modeling provides a 
tool to link synapse-level parameters and emergent 
network- level dynamics. One area in which such links 
have been made is in the study of oscillations that emerge 
at the network level in recurrent cortical circuits (X.-J. 
Wang, 2010). This is relevant to schizophrenia because 
patients exhibit abnormal patterns of oscillatory activity, 
especially in the gamma (30–80 Hz) range (González-
Burgos & Lewis, 2012; Lewis & González-Burgos, 2008; 
Uhlhaas, 2013; Uhlhaas & Singer, 2010). Computational 
models, in conjunction with physiological findings, sup-
port the idea that neocortical gamma oscillations arise 
from a feedback loop in a microcircuit of pyramidal cells 
reciprocally connected with perisomatic-targeting, parv-
albumin-expressing interneurons (Buzsáki & Wang, 

2012). In these models, gamma oscillations arise through 
a cycle of sequential activation in pyramidal cells and 
interneurons. Excitation leads pyramidal cells to fire, 
which recruits inhibitory interneurons to fire after a short 
delay. In turn, feedback inhibition suppresses firing, and 
after that inhibition subsides, the cycle begins again. Such 
oscillatory behavior arises naturally in dynamical systems 
with strong recurrent excitation and inhibition if there are 
delays or inhibition is slower than excitation. Understanding 
this basic cellular mechanism of oscillations can be 
directly applied to characterize deficits thought to occur 
in schizophrenia.

These models have been used to explore how gamma 
synchronization is affected by putative synaptic pertur-
bations associated with schizophrenia, including reduced 
production of GABA and parvalbumin in interneurons 
(Vierling-Claassen, Siekmeier, Stufflebeam, & Kopell, 
2008; Volman, Behrens, & Sejnowski, 2011), as described 
earlier. Also, experiments have demonstrated that abnor-
mal levels of dopaminergic innervation (Kömek, Bard 
Ermentrout, Walker, & Cho, 2012) and antagonism of 
NMDA receptors on specific cell types are implicated in 
optimal microcircuit function (Rotaru, Yoshino, Lewis, 
Ermentrout, & González-Burgos, 2011; Spencer, 2009). 
In each case, the models have provided specific hypoth-
eses for the physiological impact of synaptic manipula-
tions. Biophysically constrained models can also drive 
inference in the other direction to infer the site of a 
synaptic perturbation from the pattern of changes in 
oscillation biomarkers. For instance, Neymotin et  al. 
(2011) designed a detailed model of a hippocampal CA3 
microcircuit with multicompartment pyramidal cells that 
are targeted by two types of inhibitory interneurons: 
soma targeting and dendrite targeting. The authors com-
pared their simulation with in vivo recordings of local 
field potential changes in response to ketamine injec-
tion. They observed that the specific patterns of changes 
in power at gamma and theta frequency bands requires 
selective antagonism on NMDA receptors on the den-
drite-targeting interneurons rather than on the other cell 
types. As these examples demonstrate, biophysically 
constrained computational modeling provides a means 
to interpret specific biomarkers and generate hypotheses 
that can be tested further with synapse-level and cellu-
lar-level measurements.

Biophysically based models of cortical oscillations 
have proven to be useful in linking synaptic perturba-
tions to network-level biomarkers that can be measured 
in clinical populations and animal disease models. 
However, these models, although built explicitly to con-
tain cellular-level detail, were not designed to inform a 
given cognitive process or specific symptoms (i.e., they 
are nonfunctional models). Extending these results to 
cognition remains a challenge but presents a key 
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ongoing goal for schizophrenia research (which some 
models are explicitly designed to do, as reviewed in the 
final section). There is still controversy regarding whether 
oscillatory synchronization is fundamentally necessary 
for the computations performed by neocortical networks 
during cognition or whether oscillations are better under-
stood as a mere signature of a particular network state. 
Here, computational studies are needed that posit spe-
cific roles for oscillations in cognitive processes (Börgers, 
Epstein, & Kopell, 2008; Dipoppa & Gutkin, 2013) and 
make specific predictions for how behavior could be 
impaired in disease states.

Models spanning from synapses to 
cognition: Focus on WM

Ultimately, a goal of neuropsychiatry is to explain how 
symptoms and cognitive deficits arise from synaptic 
pathologies. One area that has demonstrated productive 
interplay between theory and experiment is the study of 
WM, the ability to store and manipulate information on 
the timescale of a few seconds ( Jonides et al., 2008). WM 
performance depends on a number of cortical areas, 
especially the PFC (Curtis, Rao, & D’Esposito, 2004). 
Single-neuron recording experiments showed that a neu-
ral correlate of WM in the PFC is stimulus-selective per-
sistent activity, that is, elevated firing rates in a subset of 
neurons that spans the delay period in the absence of a 
stimulus (Funahashi, Bruce, & Goldman-Rakic, 1989).

A class of computational models called attractor net-
works have been applied to explain the mechanisms that 
allow a recurrent network of spiking neurons to maintain 
persistent activity during WM. In the mathematical formal-
ism of dynamical systems, an attractor state is an activity 
pattern that is stable (i.e., the network will converge back 
to the attractor state after a small transient perturbation). 
An attractor network typically possesses multiple attractor 
states: a low-firing baseline state and multiple memory 
states in which a stimulus-selective subset of neurons are 
persistently active. In the attractor framework, strong syn-
aptic connections among neurons support a stimulus-
selective persistent activity pattern in the network (Amit & 
Brunel, 1997; X. J. Wang, 2001). Strong recurrent excita-
tion among pyramidal cells with similar selectivity sus-
tains persistent activation of those cells. Strong lateral 
inhibition, mediated by GABAergic interneurons, enforces 
selectivity of the WM representation, which prevents an 
unstructured spread of excitatory activity over time 
(Brunel & Wang, 2001; Compte, Brunel, Goldman-Rakic, 
& Wang, 2000). The stability of attractor dynamics also 
affords the network with an intrinsic resistance against 
distractors that intervene during the delay (Brunel & 
Wang, 2001; Compte et al., 2000), a key property of cir-
cuits that support goal-directed cognitive processing.

Using attractor models, researchers examined biophys-
ical requirements for stability of both low-activity baseline 
state and stimulus-selective, high-activity memory state. 
As described earlier, a strongly recurrent network with 
recurrent excitation and inhibition is prone to oscillations, 
which can destabilize and destroy WM activity. X.-J. Wang 
(1999) found that such networks can be stabilized if  
the recurrent synaptic excitation is mediated primarily 
through slow NMDA receptors rather than through fast 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
(AMPA) receptors so that excitation is slower than inhibi-
tion. These model predictions were confirmed by experi-
ments on monkeys in which researchers combined 
electrophysiological recordings and pharmacological 
manipulation in the PFC: Blocking inhibition destroys 
selectivity (Rao et al., 2000), and NMDA receptors are cru-
cial for stable persistent activity (M. Wang et al., 2013).

Within the attractor framework, Durstewitz, Seamans, 
and Sejnowski (2000) simulated dopaminergic modula-
tion of multiple cellular and synaptic sites on both pyra-
midal cells and interneurons on the basis of physiological 
measurements from experiments in cortical slices. They 
found that strong stimulation of D1 receptors increases 
stability of both baseline and memory states in the net-
work. Such a regime would be functionally beneficial 
during WM maintenance, given that the memory state is 
more robust to internal noise or external distractors. 
However, it may also be more difficult to flexibly reset 
the memory, thereby potentially generating perseverative 
errors. Conversely, low DA states have low stability for 
both regimes. This would be functionally beneficial dur-
ing reset or encoding because it facilitates transitions 
between the states. However, during maintenance, the 
network would be vulnerable, given that noise or distrac-
tors could dislodge it from the memory state. Durstewitz 
and Seamans (2008) elaborated on this work to relate the 
model’s regimes to schizophrenia symptoms. They 
hypothesized that negative symptoms might correspond 
to the first, D1-dominated regime where the network can 
be stuck in a high-activity attractor state and not flexibly 
reset. This lack of flexibility in the D1-dominated regime 
could potentially drive perseverative behavior and pre-
vent the PFC from being engaged by motivational signals 
for goal-directed behavior. Conversely, they hypothesized 
that positive symptoms might correspond to the second, 
D2-dominated regime where the network can spontane-
ously jump to a high-activity state as a result of internal 
noise, which potentially contributes to disorganized 
thought.

Other studies have focused on more generic changes 
to synaptic strengths on network dynamics and tried to 
relate those to specific behavioral impairments. This is a 
good example of where dynamical circuit models could 
be used to generate behavioral predictions, thereby 

 at Bobst Library, New York University on March 19, 2015cpx.sagepub.comDownloaded from 

http://cpx.sagepub.com/


Schizophrenia and Computational Modeling 7

highlighting the interplay across analysis levels. Loh, 
Rolls, and Deco (2007) decreased either the NMDA recep-
tor conductance, the GABA conductance, or both onto 
pyramidal cells and interneurons in an attractor network. 
These manipulations instantiate two influential theories 
of the schizophrenia pathology: NMDA receptor hypo-
function and interneuron dysfunction. Decreased NMDA 
conductance lowered memory-state stability and elevated 
distractibility because the memory state relies on strong 
recurrent excitation. Loh et al. proposed that this regime 
corresponds to cognitive and negative symptoms. In this 
regime, WM maintenance is compromised and noise can 
return the network to the baseline state. Decreased GABA 
conductance reduces baseline-state stability because 
strong feedback inhibition stabilizes the baseline state.

Moreover, Loh et  al. (2007) found that decreased 
GABA conductance increases memory-state stability and 
decreases distractibility because it is more difficult to 
switch off the disinhibited pool of active pyramidal cells, 
which is somewhat in contrast to the behavior found in 
experimental observations in schizophrenia ( J. Lee & 
Park, 2005; Park & Holzman, 1992). When both NMDA 
and GABA are reduced, the stability of both states is 
compromised, and the network undergoes noise-induced 
“wandering” among states. Similar to Durstewitz and 
Seamans (2008), Loh et al. proposed that this state cor-
responds to positive symptoms. The modeling studies 
described herein all focused primarily on the stability of 
the memory state, which suggests that its stability is asso-
ciated with microcircuit changes in schizophrenia.

As noted, one key strength of WM models is that they 
make explicit predictions not just for neural activity but 
also for behavior, which can be tested experimentally in 
clinical populations or after pharmacological challenge. 
In that sense, models that were designed to inform a 
given level of analysis could scale across levels (which is 
also the case for connections/system-level models 
reviewed later). However, this translation from circuits to 
behavior is difficult because of the complexity behind 
behavioral deficits in schizophrenia. For instance, there 
are multiple functions required for WM that could be 
impaired: encoding, maintenance, robustness to distrac-
tion, precision, and capacity. There is still controversy 
regarding specific disruptions in each of these subpro-
cesses in schizophrenia (Anticevic, Repovs, & Barch, 
2013; Barch & Braver, 2007; Barch & Ceaser, 2012). Across 
many paradigms, the primary deficits appear at encoding 
rather than maintenance ( J. Lee & Park, 2005; although 
there are relatively few studies in which researchers have 
formally manipulated delay length). For visuospatial WM, 
patients appear to exhibit deficits in encoding and main-
tenance of precision (Badcock, Badcock, Read, & 
Jablensky, 2008). In other visual paradigms, there appears 
to be reduced capacity but not necessarily precision 

(Hahn et  al., 2010; Karlsgodt et  al., 2009; Lencz et  al., 
2003). It is also possible that distinct neurophysiological 
mechanisms operate across WM modalities (e.g., verbal 
vs. spatial vs. object) that are differentially disrupted in 
schizophrenia.

Another complexity across behavioral studies is the 
stage of illness or chronicity of the patient population 
being studied. It may be possible that as the illness pro-
gresses, there are vital changes in the underlying neuro-
biology (e.g., glutamate function; Marsman et al., 2013) 
that could result in subtle but important differences in 
patterns of behavioral errors, which the models should 
incorporate into their design. Therefore, it will be critical 
to link multiple experimental modalities to computational 
models to better understand these discrepancies across 
studies.

In one such study, J. D. Murray et al. (2014) examined 
the role of excitation-inhibition balance in the behavior 
of WM networks (see Fig. 2 for a schematic of how com-
putational modeling can serve to bridge levels of analysis 
from circuits to behavior). As noted, cortical disinhibition 
has been strongly implicated in the pathophysiology of 
schizophrenia (Yizhar et al., 2011), but mechanistic links 
to cognitive and behavioral impairment remain tenuous. 
J. D. Murray et  al. used a continuous attractor model 
developed for visuospatial WM (Compte et al., 2000) and 
implemented disinhibition through antagonism of NMDA 
receptors preferentially onto interneurons. In this model, 
disinhibition leads to a broadening in the neural-activity 
patterns that underlie WM maintenance. This neural 
change induced cognitive deficits by degrading WM pre-
cision, thereby leading to an increased vulnerability to 
distractors. In the continuous networks, a distractor can 
attract the memory if the two representations overlap. 
Because disinhibition broadens the WM-activity pattern, 
there is an increased range of distractors that can disrupt 
WM report. Note that this effect is distinct from the 
decreased vulnerability in a discrete model with no over-
lap between mnemonic and distractor representations 
(Loh et al., 2007).

Because the model makes predictions at the level of 
behavior and neural activity, J. D. Murray et  al. (2014) 
could experimentally test the model using human WM 
performance. The authors studied healthy human volun-
teers who performed a WM match-nonmatch task while 
undergoing a ketamine infusion during a functional neu-
roimaging experiment (Anticevic, Gancsos, et al., 2012). 
The model predicted a pattern of errors depending on 
whether the probe was similar to a target held in WM. 
Analysis of the behavioral data guided by the model 
revealed a similar specific pattern of errors under ket-
amine versus control conditions to that predicted by the 
computational model. This example demonstrates a util-
ity of computational modeling, given that it inspired a 
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more fine-grained behavioral analysis that, in turn, shed 
light on the specific cognitive deficits in this experiment. 
Using a similar model, Cano-Colino and Compte (2012) 
demonstrated that a stronger disinhibition can potentially 
destabilize the baseline firing state, thereby causing 

spontaneous emergence of random memory states. 
Critically, such different regimes can potentially be dis-
sociated at the behavioral level by behavioral experi-
ments that juxtapose competing model predictions. Put 
differently, the described microcircuit model can gener-
ate opposing behavioral predictions based on specific 
synaptic disturbances. Such models now need to be sys-
tematically applied to help guide analysis of behavioral 
data in schizophrenia.

Modeling can also suggest what aspects of neural 
activity or behavior may be sensitive or robust to particu-
lar manipulations by disease or treatment. Changes in 
certain network parameters, or the combinations of 
parameters, have much stronger impact on model behav-
ior than do changes in other parameter combinations 
(Gutenkunst et al., 2007). J. D. Murray et al. (2014) found 
that excitation/inhibition balance is a key parameter for 
optimal network function. This sensitivity to excitation/
inhibition balance was also found in an extended model 
of reciprocal antagonism between a WM network and a 
task-deactivated network (see Fig. 3 for a schematic of 
parameter space exploration). Specifically, Anticevic, 
Cole, et al. (2012), Anticevic, Gancsos, et al. (2012), and 
Anticevic, Repovs, and Barch (2013) modeled the func-
tional antagonism between the task-positive (fronto- 
parietal) WM network and the task-deactivated default 
model network. Within the model, they implemented the 
alterations of excitation/inhibition balance by reducing 
the NMDA receptor contribution on the inhibitory inter-
neurons. They compared their modeling results with 
neuroimaging experimental observations in which 
healthy volunteers underwent a ketamine infusion during 
WM performance. The authors found that NMDA recep-
tor antagonism disrupted the anticorrelated functional 
properties of the two systems during WM, which is quali-
tatively similar to schizophrenia observations. They found 
that the excitation/inhibition balance manipulation within 
the model architecture qualitatively reproduced the 
experimental blood-oxygen-level-dependent (BOLD) 
responses. The authors also found that the model was 
robust to proportional excitation/inhibition changes that 
maintain the ratio, which is similar to the microcircuit 
model observations. Collectively, both modeling investi-
gations, at the microcircuit and system levels, showed 
that excitation/inhibition balance is vital for optimal cog-
nitive performance and neural-system-level operation. 
These modeling and experimental observations point to 
a “net effect” mechanism that could be operating in 
schizophrenia despite the underlying complexity of pos-
sible synaptic alterations.

Another application of biophysically constrained mod-
eling is the ability to test compensations that, in turn, 
could generate hypotheses about treatment mechanisms. 
The described models suggest that excitation/inhibition 
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Fig. 2. Schematic of highlighted findings from a recent computational-
modeling investigation. The bottom panel shows the manipulation of 
the N-methyl-D-aspartate glutamate (NMDA) receptor conductance on 
excitatory (E) and inhibitory (I) cells within a biophysically realistic 
computational model of working memory (complete details are pre-
sented in J. D. Murray et al., 2014). Because the model is able to cap-
ture effects at the microcircuit level (i.e., via firing traces), it generates 
a specific set of predictions that can be tested at the level of regions 
or neural systems. As shown in the middle panel, the specific predic-
tion is a broadening of the working memory profile after decreased 
inhibitory drive onto E cells. This prediction could be tested with elec-
trophysiology (M. Wang et al., 2013) or blood-oxygen-level-dependent 
functional MRI at the level of neural systems (Anticevic, Cole, et al., 
2012; Anticevic, Gancsos, et al., 2012). Last, as shown in the top panel, 
the model generates a behavioral readout such that a specific profile of 
errors is predicted (top left), which can be tested with carefully opti-
mized behavioral experiments (top right). Collectively, this approach 
has the potential to inform across-level understanding disturbances in 
schizophrenia from receptor to behavior. Nonetheless, this approach 
is limited because, at present, it can be extended to only a few well-
characterized computational and behavioral processes, such as working 
memory (see main text for more extensive discussion). Asterisks indi-
cate significance (***p < .001).
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balance is the key parameter in determining network func-
tion. It is important that excitation/inhibition balance can 
be restored through compensations acting on multiple 
parameters. Specifically, J. D. Murray et al. (2014) tested 
two hypothesized mechanisms for pharmacological treat-
ments: GABAA-α2 agonism, implemented by strengthen-
ing the inhibition onto pyramidal cells; and mGluR2/3 
agonism, implemented by decreasing presynaptic gluta-
mate release. They found that the GABAergic compensa-
tion required a small (2%) modification of parameters to 
reverse deficits. In contrast, the glutamatergic compensa-
tion required a large (25%) modification of parameters to 
restore behavior. The difference in modification magni-
tudes can be explained through their effects on excitation/
inhibition balance: GABAA-α2 agonism acts directly on 
inhibition to reduce the excitation/inhibition ratio, whereas 
mGluR2/3 agonism in effect decreases both excitation and 
inhibition, thereby having a weaker impact on the excita-
tion/inhibition ratio. This effect was a robust property of 
the model, irrespective of specific parameter starting 
points, which highlights excitation/inhibition balance as 
the key effective parameter. This example demonstrates 
how biophysically based modeling can provide a path for 
exploring potential treatments to ameliorate impairments 

that may exist in schizophrenia by targeting mechanisms 
that can restore optimal microcircuit function.

Future directions

One challenge for biophysically based modeling studies 
is the extension of this approach to large-scale distrib-
uted brain networks beyond the microcircuit level (Deco 
et  al., 2013). The study of large-scale network models 
offers potential both in the interpretation of disease-
related biomarkers and in understanding the neural- 
circuit basis of cognitive dysfunction across psychiatric 
conditions. Functional MRI studies have revealed patterns 
of cortical dynamics both at rest and during cognitive 
performance that are profoundly altered in schizophrenia 
(Anticevic, Cole, et  al., 2014; Barch & Ceaser, 2012; 
Fornito et al., 2012).

As noted, there are a number of theoretical models that 
articulate that schizophrenia is a disorder of large-scale 
dysconnectivity (Friston & Frith, 1995; Stephan et al., 2006; 
Uhlhaas, 2013; Uhlhaas & Singer, 2010). Consistent with 
this hypothesis, results from resting-state functional con-
nectivity studies have demonstrated coupling disruptions 
between brain areas in schizophrenia (Fornito et al., 2012), 
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including PFC (Cole, Anticevic, Repovs, & Barch, 2011) 
and thalamo-cortical systems (Anticevic, Cole, et al., 2014; 
Woodward et al., 2012). There are ongoing efforts, how-
ever, to determine the specificity of these effects in relation 
to other severe mental illness (Anticevic, Brumbaugh, 
et al., 2012; Anticevic, Savic, et al., 2014; Anticevic, Yang, 
et al., 2014), such as bipolar disorder and autism (Anticevic, 
Cole, et al., 2013).

Similar large-scale alterations in resting-state func-
tional connectivity have also been documented in phar-
macological models, such as the NMDA receptor 
antagonist ketamine model (Driesen et al., 2013). During 
cognitive tasks, both schizophrenia and NMDA receptor 
pharmacological manipulations are associated with dis-
rupted activation and deactivation across distributed cor-
tical networks (Anticevic, Gancsos, et  al., 2012). 
Large-scale biophysically based models could help to 
elucidate synaptic contributions to these large-scale net-
work alterations, thereby helping to bridge levels of anal-
ysis (Anticevic, Gancsos, et al., 2012; Deco et al., 2013). 
Yang et al. (2014) recently have provided evidence that 
such biophysical dynamical models can be used to pro-
vide insight into large-scale neural-system disturbances 
observed during resting state in chronic patients with 
schizophrenia. Specifically, Yang et al. found that altera-
tions in model connectivity either at local circuit level or 
across the entire network can effectively model elevated 
neural variability observed in schizophrenia. Such 
dynamical models of resting-state fluctuations have the 
potential to elucidate emerging neuroimaging biomark-
ers in schizophrenia (Anticevic, Cole, et al., 2013).

Another challenge is the extension of biophysically 
based models to more complex behavior and symp-
toms. Thus far, biophysically based models have been 
applicable to a limited repertoire of functions related to 
cognition, such as WM maintenance, primarily because 
such functions have been characterized through primate 
physiology experiments. One area of progress is in the 
domain of decision making. The neural-circuit bases of 
decision-making processes have been investigated in 
electrophysiological and computational-modeling stud-
ies (X.-J. Wang, 2008). Decision making, which is 
impaired in a range of psychiatric conditions in addition 
to schizophrenia, involves an extensive network of cor-
tical and subcortical areas (D. Lee, 2013). To accurately 
capture adaptive cognitive behavior, researchers must 
incorporate multiple interacting brain areas into models 
that possess various distributed and modular computa-
tions. In this area, biophysically based modeling will be 
informed by other levels of modeling that are more 
abstract and removed from biophysical detail but that 
can be readily applied to modeling psychological pro-
cesses and interactions among distributed neural sys-
tems. In the next section, we discuss the insights into 

more complex cognitive processes provided by connec-
tionist models, whereas in the final section, we focus on 
select examples of modeling complex behavioral defi-
cits in schizophrenia, which is currently out of reach for 
simple neural-circuit models.

Connectionist Models—Understanding 
System-Level Disturbances in 
Schizophrenia From Both a 
Psychological and a Neural Perspective

Another class of models used to examine the psychologi-
cal and neurobiological mechanisms of schizophrenia 
stem from the connectionist or parallel-distributed- 
processing (PDP) framework (McClelland & Rumelhart, 
1986; Rumelhart & McClelland, 1986). These models 
 originated from a tradition that prioritized understanding 
the mechanisms driving cognition from a psychological 
perspective but using principles thought to capture com-
putations as they might be carried out in the brain. In 
such models, each unit is a simple summing device that 
collects inputs from other model units and changes its 
output when the inputs change. Information in such 
models is represented as graded activity patterns over 
populations of these simple units in which processing 
takes place as the flow of activity from one set of units to 
another. Learning occurs through the modification of the 
connection strengths between these simple units. This 
learning is meant to capture some elements of the type 
of Hebbian learning known to govern changes in con-
nection strength between neurons and is sometimes 
accomplished using algorithms referred to as “back- 
propagation” (Rumelhart, Hinton, & Williams, 1986). In 
back-propagation, the model is presented with an input 
pattern, and the output layer is allowed to settle into 
some response. The difference between the response 
generated by the model and the expected response (the 
target) is computed. In turn, these error signals are prop-
agated back through the network toward the input layer, 
thereby adjusting the weights or connections between 
units. This is not precisely Hebbian learning, and at least 
in one sense, this is not a biologically plausible learning 
mechanism, given that we do not typically have access to 
the “correct” response in a way that can shape learning.

Another biological implausibility here stems from the 
lack of evidence for a mechanistic basis for back-propa-
gating learning signals (but see O’Reilly’s, 1996, work in 
trying to generate a biologically plausible alternative to 
back-propagation). This is an example of how, at times, 
connectionist models, although capturing complex neural 
phenomena, may not map onto specific neurobiologically 
based mechanisms (in contrast to biophysically based 
models described earlier). Nevertheless, this approach 
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captures the idea that learning occurs through a slow 
elimination of error by small changes in the connections 
between units, a phenomenon referred to as “gradient 
descent” (Cohen, Servan-Schreiber, & McClelland, 1992), 
which is thought to be disrupted in schizophrenia.

In such PDP models, the units are not meant to have 
one-to-one correspondence to individual neurons but, 
rather, to represent processing accomplished by neuronal 
assemblies that capture the general principles of neuro-
nal information processing. Such models are typically 
simplified, capturing brain-style computation, without 
necessarily committing to the details of any particular 
neural system or subsystem (although see our later dis-
cussion for modifications that do try to make specific 
types of commitments and neurotransmitter modula-
tions). Nonetheless, such connectionist models help to 
build bridges between understanding of low-level proper-
ties of neural systems and their participation in higher-
level (system) behavior. They have the additional 
advantage of being able to capture a wide range of com-
plex behaviors and neural-system interactions that cannot 
at present be modeled as effectively by biophysically 
based models (Cohen, Dunbar, & McClelland, 1990; 
Cohen & Servan-Schreiber, 1992; McClelland, 1991; 
McClelland & Elman, 1986; McClelland, St. John, & 
Taraban, 1989; Plaut, 1996; Plaut & Farah, 1990; Plaut, 
McClelland, Seidenberg, & Patterson, 1996; Plaut & 
Shallice, 1993).

Connectionist modeling of 
hallucinations and delusions in 
schizophrenia

Seminal models using such a framework were developed 
by Ralph Hoffman and colleagues in their examination of 
the impact of abnormal synaptic pruning in the cortex 
(Feinberg, 1982). Such models tested the effect of elimi-
nating the connections between units (Hoffman & 
Dobscha, 1989). Hoffman and Dobscha (1989) found that 
when a sufficient number of connections were elimi-
nated, the model developed what was referred to as “par-
asitic foci.” That is, they observed patterns of activity 
across units in the model that did not correspond to any 
learned memory but, instead, to the “state” to which the 
model kept returning. Hoffman and Dobscha likened 
these parasitic foci to delusions and hallucinations. 
Subsequently, Hoffman and McGlashan (1997) extended 
this framework to simulate speech perception and to 
compare effects of synaptic pruning with cell loss (elimi-
nation of whole units in the model). They used a type of 
PDP model referred to as an “Elman” network, which is a 
sequential recurrent network. Such networks consist of 
an input and an output layer connected by a “hidden 
layer” that computes internal processing. This Elman 

network included an additional layer connected to the 
hidden layer that could temporarily store information and 
was thought to support WM functions (temporary stor-
age of information) during speech perception. They 
found that elimination of synapses in the WM subnet-
work of the model initially improved speech perception. 
As the severity of the elimination increased, however, the 
model started to fail to detect words correctly and started 
to generate “hallucinations” or patterns of activity across 
the output layer that corresponded to words even if there 
was no structured input. In contrast to synapse elimina-
tion, a small of amount of “cell” removal (e.g., elimination 
of units) also initially improved speech perception, but 
greater cell loss did not generate hallucinations.

These early models were “proof-of-concept” examples 
of how various neurobiological changes might affect 
connectionist networks but did not explicitly simulate 
and match the model behavior with the experiment. 
Next, Hoffman and McGlashan (2001) examined the 
model’s ability to capture behavior produced by real 
patients. Specifically, they studied speech perception dur-
ing babble among healthy individuals and schizophrenia 
patients with and without hallucinations. Consistent with 
the model, results showed that patients who experienced 
hallucinations made more errors in speech detection and 
had more misperceptions of words, although the nonhal-
lucination patients experienced as many misperceptions 
at the highest noise levels. Furthermore, Hoffman and 
McGlashan examined the ability of repetitive TMS (rTMS) 
to reduce hallucinations, given that their modeling work 
predicted that the suppression of information flow should 
reduce misperceptions. This work was also based on 
prior imaging findings by Silbersweig et al. (1995), which 
indicated hyperactivity in auditory cortex during halluci-
nations. Consistent with the Silbersweig et al. model, sup-
pressive rTMS significantly reduced hallucinations in 
schizophrenia patients compared with sham rTMS 
(Hoffman & McGlashan, 2001). Subsequently, Hoffman 
and McGlashan extended this model of speech percep-
tion to capture the potential influence of increased DA. 
Because of the putative role of DA in inhibition, they 
modeled increased DA by changing the bias onto the 
units in the WM module, thereby effectively requiring 
them to accumulate greater information to maintain infor-
mation. This manipulation relates to only one aspect of 
the influence of DA on neuronal information processing, 
and by itself, it did not fully capture the data on speech 
perception. However, a combination of increased DA and 
synaptic pruning more successfully captured the perfor-
mance of those patients who experienced hallucinations. 
In related work, Siekmeier and Hoffman (2002) used the 
same type of model to simulate semantic priming changes 
in schizophrenia and showed that reductions in connec-
tivity could simulate the patterns of increased “automatic” 
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semantic priming in schizophrenia as shown by Kwapil, 
Hegley, Chapman, and Chapman (1990).

Hoffman’s most recent work took a somewhat differ-
ent approach. Here, Hoffman et al. (2011) used a con-
nectionist model of narrative comprehension and recall 
called DISCERN (Miikkulainen & Dyer, 1991). DISCERN 
consists of a set of hierarchically organized modules that 
use a PDP framework that instantiates a lexicon of dis-
tributed input/output representations that can accom-
plish narrative text comprehension and recall of narrative 
components. Its development was not strongly driven by 
biological constraints; rather, the principles of processing 
are subsymbolic and capture brainlike processing. 
Hoffman et al. used this model to simulate eight different 
potential illness mechanisms in schizophrenia and their 
ability to capture the patterns of story recall shown by 
individuals with schizophrenia and control participants. 
These illness mechanisms varied in their level of analysis 
and ranged from a neural level (e.g., disconnection in 
WM-related brain networks, increased cortical noise, 
increased DA, increased neuronal arousal) to a more cog-
nitive level (e.g., increased semantic priming, semantic 
network distortion) to hybrid mechanisms (increased 
learning due to exaggerated prediction error signals poten-
tially resulting from altered DA function). Hoffman et al. 
found that the “hyperlearning” mechanism best captured 
recall patterns found in schizophrenia, including errors 
involving confusions of “who did what” that Hoffman et al. 
likened to the formation of delusional beliefs.

The models used by Hoffman (1997) and Carter and 
Neufeld (1999) used the brain-style computational prin-
ciples embodied by PDP but did not make strong com-
mitments to key aspects of neurobiology during model 
development. Nonetheless, they were critical steps to 
understand how neurobiological or cognitive deficits 
might contribute to the formation of core symptoms of 
psychosis, such as hallucinations and delusions. Although 
the models themselves did not produce behaviors with 
the same format and content as shown by human patients, 
the “in-principle” examples provided conceptual leverage 
to bridge the gap between biology and behavior and 
even extend to treatment recommendations in the case of 
the rTMS work conducted by Hoffman et  al. (2011). 
Therefore, despite not committing to biological realism, 
connections models can guide neural/behavioral predic-
tions that ultimately have treatment implications.

Connectionist modeling of cognition 
in schizophrenia

Another set of PDP models developed by Cohen and 
Servan-Schreiber (1992), and expanded by additional col-
leagues, made stronger commitments to neurobiological 
principles. The initial models developed by Cohen and 

Servan-Schreiber instantiated the hypothesis that cogni-
tive control results from interactions between the DA 
neurotransmitter system and the PFC. These models sug-
gested that goal-related information, or context informa-
tion, was maintained in the PFC and used to bias 
stimulus-response mappings represented in the posterior 
cortex, thereby serving as a source of top-down support 
for controlling behavior (see Fig. 4 for a computational 
model of cognitive control). In these models, the “con-
text” module was associated with the functions of the 
DLPFC. Active maintenance in the absence of external 
inputs was assumed to occur via recurrent excitation, as 
suggested by neurobiological data (Funahashi et  al., 
1989). This model assumed that feedback projections 
from the context/DLPFC module biased processing in 
posterior systems via direct excitation but that competi-
tion between representations within a processing stream 
occurred via lateral inhibition (Cohen et al., 1990; Cohen, 
Servan-Schreiber, & McClelland, 1992). Furthermore, the 
effects of DA were assumed to be modulatory rather than 
purely inhibitory, such that changes in DA activity could 
either increase or decrease activity depending on the 
nature of inputs that DA was modulating. Put differently, 
increases in DA were assumed to increase the signal-to-
noise ratio of a unit’s activation value in relation to its 
input. With excitatory input, higher gain means that the 
same level of input leads to higher activation. Conversely, 
with inhibitory input, higher gain leads to more negative 
values and lower activation.

This basic Cohen and Servan-Schreiber (1992) model 
was used to capture the patterns of behavioral data 
shown by healthy individuals in three different tasks—
the Stroop task, lexical disambiguation task, and continu-
ous-performance task (CPT)—that were all thought to 
depend on the ability to represent and maintain context/
goal information in DLPFC (see Fig. 5 for empirical and 
simulation results). In the Stroop task, individuals are 
presented with words in different-colored inks with the 
words themselves either color words or noncolor words. 
The color and the word can be congruent (e.g., red writ-
ten in red) or incongruent (e.g., red written in green). 
Participants are typically asked to respond on the basis of 
the ink color and to ignore the word and are slower and 
less accurate if the word and the color conflict. The 
model assumes that this context/goal information 
(“respond to color, ignore the word”) is maintained in the 
context/DLPFC module and facilitates processing of the 
color information through feedback excitation. This 
allows the context module to effectively compete for 
response selection with the word information via lateral 
inhibition even though word reading is typically the 
dominant response. In the lexical disambiguation task, 
participants are presented with homophones (e.g., pen) 
that have a dominant meaning (writing instrument) and a 
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subordinate meaning (fenced enclosure) and asked to 
interpret the meaning of the homophone. The homo-
phones are accompanied by sentences that either bias 
the individual toward the dominant meaning (e.g., You 
can’t sign a check) or the subordinate meaning (e.g., You 
can’t keep chickens) of the word. Furthermore, this bias-
ing context could come either before the homophone 
(e.g., You can’t keep chickens . . . without a pen) or after 
the homophone (e.g., Without a pen . . . you can’t keep 
chickens). The model assumed that when the biasing 
context preceded the homophone, it was maintained in 
the context/DLPFC module. This information could be 
used to bias the interpretation of the homophone pen 
toward the subordinate meaning, thereby allowing it to 
effectively compete against the dominant meeting.

Last, the CPT used was a version developed by 
Cornblatt, Lenzenweger, and Erlenmeyer-Kimling (1989) 
and Cornblatt, Risch, Faris, Friedman, and Erlenmeyer-
Kimling (1988) called the CPT-Double, in which 

participants were required to respond “target” every time 
the current stimulus was the same as the immediately 
preceding stimulus. In the model, it was assumed that the 
preceding stimulus was maintained in the context/PFC 
module, and that, again, this information could bias inter-
pretation of the next stimulus as either a target or a non-
target response. As shown in Figure 5, these models 
captured performance patterns across conditions in 
healthy individuals in all three tasks.

More important, these three models were used to test 
the hypothesis that reductions in DA input into DLPFC 
lead to impairments in the ability to represent and main-
tain context information in DLPFC and that this impair-
ment in the representation of context leads to deficits in 
a range of cognitive tasks among individuals with 
schizophrenia. To test this hypothesis, Cohen and 
Servan-Schreiber (Cohen & Servan-Schreiber, 1993; 
Cohen, Servan-Schreiber, & McClelland, 1992; Cohen, 
Targ, Servan-Schreiber, & Spiegel, 1992; 

CORE PRINCIPLES:
•  Context/goals represented in DLPFC
•  Active memory through local recurrent connections
•  Feedback projections bias processing (direct excitation + local inhibition)
•  Reward information and DA help the system learn to gate information into active memory

•  Locus Coeruleus and NE adaptively modulate gain to shift between exploitation and exploration
•  ACC and OFC evaluate performance and compute utility (cost/benefit) estimates

Sensory Input

Domain-Specific
Knowledge

(Posterior Cortex)

ResponseContext (DLPFC)

Active
Memory

Bias

Control
Regulation

Performance Monitoring/
Utility Assessment

(ACC/OFC)

Selection/
UpdatingReward Prediction/

Gating
(DA)

Reward

Learning

Adaptive Gain Modulation
(Locus Coeruleus and NE)

Fig. 4. Computational model of cognitive control. Extensions to original model developed by Cohen and Ser-
van-Schreiber (1992; model components in blue) that include roles for (a) dopamine (DA) in gating information 
into active memory (model components in green; Braver & Cohen, 1999), (b) anterior cingulate cortex (ACC) 
in monitoring for conflict and dynamically regulating cognitive control (model components in red; Botvinick, 
Braver, Barch, Carter, & Cohen, 2001), and (c) orbitofrontal cortex (OFC) in computing value/utility estimates 
and the locus coeruleus and norepinephrine (NE) in adaptive gain modulation to shift between exploitation and 
exploration (model components in purple; Aston-Jones & Cohen, 2005). DLPFC = dorsolateral prefrontal cortex.
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Servan-Schreiber, Cohen, & Steingard, 1996) modeled a 
reduction in DA inputs into DLPFC via a reduction in 
the gain parameter that modulates the signal-to-noise 
ratio of units in the context/DLPFC module. These 

researchers used the exact same manipulation to mimic 
reduced DA across all three models/tasks and found 
that the perturbed model captured all of the key aspects 
of performance changes among individuals with 
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and Servan-Schreiber (1992). See text for explanation of tasks and gain manipula-
tion in model simulations.
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schizophrenia (see Fig. 5), including (a) overall slower 
performance on the Stroop task and increased interfer-
ence on incongruent trials (in which the word and the 
color conflict), (b) increased misses and false alarms on 
the CPT-Double, and (c) an increase in interpretation of 
homophones as their dominant meaning. Furthermore, 
Cohen and Servan-Schreiber showed that a manipula-
tion designed to mimic slowed processing speed (i.e., a 
change in cascade rate) did not recapitulate the pattern 
of performance shown by the individuals with schizo-
phrenia on the Stroop task.

Using models to make predictions 
about cognitive function in 
schizophrenia

One important goal of computational models is to use 
modeling in a predictive fashion to test specific hypoth-
eses about neurobiological or cognitive mechanisms that 
might lead to psychiatric impairments. Motivated by this 
goal, Cohen, Barch, Carter, and Servan-Schreiber (1999) 
used their initial modeling to create new versions of the 
CPT and the Stroop task to test model predictions regard-
ing effects of reduced DA inputs into DLPFC on cognitive 
function in schizophrenia. Specifically, they modified a 
version of the AX-CPT, in which participants are pre-
sented with pairs of letters and instructed to respond “tar-
get” to the letter X, but only if it follows the letter A. To 
test hypotheses about a specific deficit in context pro-
cessing, they made two modifications to the AX-CPT 
(Servan-Schreiber et al., 1996). For the first modification, 
they increased the frequency of target (AX) pairs to 70% 
and divided the remaining 30% evenly between three dis-
tractor conditions: a non-A followed by an X (BX condi-
tion), an A followed by a non-X (AY condition), and a 
non-A followed by a non-X (BY condition).

This frequency distribution creates two biases that can 
be used to probe context processing. First, it creates a 
bias to respond “target” to an X, given that this is the cor-
rect response for 87.5% of the trials in which X appears. 
This tendency has to be inhibited in the BX condition by 
using the context provided by the prior stimulus (non-A 
stimulus). Second, it creates a bias to prepare a target 
response after an A, given that the majority of the time 
the A will be followed by an X. Thus, on AY trials, indi-
viduals who are able to represent and maintain context 
should be slower and less accurate as the context leads 
them astray. The second manipulation was to vary the 
delay (1,000 or 5,000 ms) between the cue (A/non-A) 
and the probe (X/non-X) stimuli, with the hypothesis that 
deficits should be worse among individuals with schizo-
phrenia at a longer delay because context information 
needs to be maintained.

Cohen et al. (1999) also made two modifications to the 
Stroop task. To increase reliance on context, they varied 
the task to be performed variably on each trial, signaled 
by a cue (context) that indicated whether the person 
should name the color or read the word. In addition, they 
varied the delay between the cue and the stimulus to 
examine whether individuals with schizophrenia have 
more difficulty using the cue (context) at longer delays to 
inhibit word reading (dominant response) on color- 
naming trials (subordinate response). Cohen et al. exam-
ined the model predictions with an independent sample 
of schizophrenia patients and healthy control participants 
on these modified AX-CPT and Stroop tasks, as well as 
on the lexical disambiguation task described earlier. 
Consistent with model predictions, results showed that 
schizophrenia patients made more errors in the AX and 
BX conditions than did control participants but not in the 
AY or BY conditions. Furthermore, patients with schizo-
phrenia showed an increase in AX and BX errors from 
the short to the long interstimulus interval condition. 
They observed an increase in AX errors in patients with 
schizophrenia (but not BX errors) that was greater than 
that shown by healthy control participants or depressed 
patient control participants (see Barch & Braver, 2007, for 
a review of AX-CPT findings in schizophrenia). In the 
Stroop task, schizophrenia patients showed the predicted 
increase in interference compared with control partici-
pants in the color-naming condition, although the pre-
dicted interaction with delay was not found. However, in 
the lexical disambiguation task, the predicted three-way 
interaction with condition, delay, and group was found. 
That is, schizophrenia patients were less likely than were 
healthy or depressed control participants to produce the 
subordinate interpretation of the homophone when there 
was a delay between the context and the response. 
Although not every prediction was upheld, this work is 
an example of the ability to use computational models to 
make novel predictions about psychological and neural-
system level mechanisms of cognitive impairment in 
schizophrenia that can be tested experimentally.

Using models to make predictions 
about DLPFC activity

As noted, one of the hypotheses embodied in the Cohen 
et al. (1999) models was that the DLPFC is responsible for 
the representation and maintenance of context and that 
schizophrenia patients exhibit deficits in DLPFC function 
due to reduced DA input. For this reason, the models also 
make the prediction that schizophrenia patients should 
show reduced activation of the DLPFC during tasks that 
require representation and maintenance of context. This 
prediction is not a particularly novel or a unique 
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hypothesis. Also, numerous studies with a variety of task 
conditions have shown reduced DLPFC activity in schizo-
phrenia (Minzenberg, Laird, Thelen, Carter, & Glahn, 
2009). However, the Cohen et al. models did make spe-
cific predictions that individuals with schizophrenia 
should show reduced DLPFC activity in conditions with a 
strong demand for context maintenance. Consistent with 
these predictions, research has shown that schizophrenia 
patients exhibited reduced activity on long-delay trials in 
the AX-CPT (Barch et al., 1999), during B versus A cues 
on the AX-CPT (Edwards, Barch, & Braver, 2010; Holmes 
et al., 2005; MacDonald et al., 2005; Perlstein, Dixit, Carter, 
Noll, & Cohen, 2003; Yoon et al., 2008), and during cues 
that predict the need to overcome a prepotent response 
(Snitz et  al., 2005). Furthermore, schizophrenia patients 
showed reduced connectivity between frontal and 
 parietal/occipital regions during B cues as compared with 
control participants, although the models did not make 
specific predictions about connectivity (Fornito et  al., 
2011). In addition, research has shown that focused train-
ing context maintenance leads to increased DLPFC activ-
ity to cues on the AX-CPT task (Edwards et al., 2010) in 
schizophrenia.

Extension to include a “gating” 
mechanism

The modeling described herein captured performance of 
healthy individuals on a range of tasks and simulated 
effects of reduced DA in DLPFC as a means of capturing 
the performance in schizophrenia. However, there were 
key issues not captured by these models. One issue was 
how humans manage the trade-off between appropriate 
updating of context information in DLPFC versus protec-
tion of already stored information from context/goal-
irrelevant information that could disrupt ongoing 
maintenance. Thus, Braver, Barch, and Cohen (1999) and 
Braver and Cohen (1999) extended the model to address 
this issue by postulating that the DA projection to DLPFC 
serves a possible gating function (also see other models 
incorporating the basal ganglia into the gating mecha-
nism; Hazy, Frank, & O’Reilly, 2006, 2007). This is accom-
plished by regulating access of context representations 
into active memory whereby the system learns what 
information should be gated into DLPFC via the 
 reinforcement-learning functions of DA (see Fig. 4). In 
this gating model, DA plays an important control function 
by enabling flexible updating of active memory in DLPFC 
while retaining protection against interference. 
Specifically, this model posited that phasic changes in DA 
activity mediate both gating and learning effects in the 
PFC through similar neuromodulatory mechanisms, 
although possibly through different DA receptor sub-
types (Braver & Cohen, 1999; Braver et al., 1999). Similar 

to the idea that DA potentiates the gain of signals into the 
DLPFC, the gating effect occurs through transient poten-
tiation of both excitatory afferent and local inhibitory 
input.

Conversely, learning effects occurs through Hebbian-
type modulation of synaptic weights driven by errors 
between predicted and received rewards. The coinci-
dence of the gating and learning signals produces corti-
cal associations between the information being gated and 
a triggering of the gating signal in the future. This model 
also captured the performance of healthy individuals on 
the AX-CPT task (Braver & Cohen, 1999; Braver et  al., 
1999). Furthermore, the model captured behavioral 
effects of presenting interference items (e.g., letters pre-
sented in a different color) that occurred between the cue 
and the probe during the AX-CPT and the impact of such 
distractors in DLPFC activity (Anticevic, Repovs, Corlett, 
& Barch, 2011).

The Braver model (Braver & Cohen, 1999; Braver 
et al., 1999) also embodied a somewhat different hypoth-
esis about the nature of impaired DA function in schizo-
phrenia by positing that schizophrenia may reflect a 
noisy DA gating signal, which results in increased tonic 
and decreased phasic DA function, originally proposed 
by Grace (1991), which may also have relevance for pre-
frontal function in schizophrenia (Bilder, Volavka, 
Lachman, & Grace, 2004). The “lesioned” model with the 
noisy gating function captured AX-CPT performance 
shown by schizophrenia patients. However, it is not clear 
whether this hypothesis about the role of DA in schizo-
phrenia matches existing data. A recent meta-analysis of 
DA function in schizophrenia has suggested evidence of 
a significant increase in DA availability in schizophrenia 
(Fusar-Poli et  al., 2013; Howes et  al., 2012; Samartzis, 
Dima, Fusar-Poli, & Kyriakopoulos, 2014). There is also 
evidence for increased occupancy of D2 receptors by DA 
in schizophrenia (Abi-Dargham et al., 2000). These data 
are consistent with the hypothesis that tonic DA levels 
are increased in schizophrenia, which is in line with the 
proposed deficits in the gating model. However, there is 
also consistent evidence that schizophrenia exhibits an 
increase in DA release in response to pharmacological 
challenge (Abi-Dargham et al., 1998; Abi-Dargham et al., 
2004; Abi-Dargham, van de Giessen, Slifstein, Kegeles, & 
Laruelle, 2009; Laruelle et al., 1996). This is possible evi-
dence for increased phasic release of DA rather than 
decreased phasic release.

However, positron emission tomography studies of DA 
function in schizophrenia cannot isolate the type of pha-
sic DA function that the model attempts to capture; thus, 
more work is needed to understand how alterations in DA 
function in schizophrenia influence the type of phase-
related DA release simulated in the model, which is tightly 
coupled to ongoing cognitive processing. Moreover, the 
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role of distinct DA receptor subtypes, their alterations in 
schizophrenia, and their contributions to PFC function 
remain to be fully incorporated into models that capture 
the interaction of the basal ganglia and the PFC.

Characterizing Complex Behavioral 
Disturbances in Schizophrenia via 
Computational Modeling

We focused on two levels of analysis in which neurobio-
logical deficits in schizophrenia may occur, namely, the 
level of cells/microcircuits ( J. D. Murray et al., 2014) and 
the level of neural systems (Cohen & Servan-Schreiber, 
1992), which can be examined via animal/pharmacologi-
cal models and neuroimaging experiments, respectively. 
However, schizophrenia ultimately affects complex 
behaviors, such as motivation (Barch & Dowd, 2010; 
Dowd & Barch, 2010), learning (Corlett, Honey, Krystal, 
& Fletcher, 2011), belief (Corlett, Honey, & Fletcher, 
2007), and perception (Kapur, 2003). The ultimate goal of 
computational neuropsychiatry is to provide a bridge for 
understanding how synaptic-level disturbances can scale 
to alterations in neural systems and, ultimately, alter com-
plex behavior. At present, this unifying understanding is 
out of reach for clinical neuroscience. However, there 
have been productive efforts to mathematically formalize 
complex behavioral abnormalities observed in schizo-
phrenia, as well as their relationships to brain activity. 
Computational models have been applied to characterize 
observed behavioral alterations and generate experimen-
tal predictions about the type of behavioral deficits that 
may be occurring in patients. Some of these models do 
not provide strong inferences about cellular- or neural-
system-level mechanisms (although some do), but they 
do provide a highly productive methodological frame-
work for systematically understanding complex behav-
ioral alterations in schizophrenia. It is important to note 
that this review is not intended to comprehensively 
review the literature on mathematical modeling of behav-
ior or brain-behavior relationships in schizophrenia (see 
prior excellent reviews on this topic by Deserno, Boehme, 
Heinz, & Schlagenhauf, 2013; Maia & Frank, 2011).

Here, we highlight a few focused studies that provide 
an example for this type of computational approach, 
which can interface with both behavioral and brain- 
imaging experiments. We argue that formalizing behavior 
and brain-behavior relationships in mathematical princi-
ples provides a vital tool for understanding specific symp-
toms in schizophrenia and can also guide experimental 
studies across levels of analysis. In fact, many of the mod-
els described in the following discussion have been used 
to generate predictions about both behavior and brain-
behavior relationships (e.g., see the work of John 
O’Doherty, Nathaniel Daw, and many other researchers; 

Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Daw, 
Niv, & Dayan, 2005; Wunderlich, Rangel, & O’Doherty, 
2009; also see Fig. 1). These models can generate predic-
tions about both behavior and brain-behavior relation-
ships in schizophrenia (Gold et al., 2012; Gradin et al., 
2011; G. K. Murray et al., 2008; Schlagenhauf et al., 2014).

Modeling of Reward Learning in 
Schizophrenia

An excellent example for mathematical modeling of 
behavior applied to schizophrenia is illustrated through 
studies by James Gold, Michael Frank, and colleagues 
(Gold et al., 2006; Gold et al., 2008; Gold et al., 2012). 
Although these studies can be broadly classified as incor-
porating connectionist models, they have also provided a 
characterization of complex behavioral abnormalities in 
schizophrenia. This work collectively focuses on under-
standing learning disruptions in schizophrenia, which 
may underpin some more complex abnormalities in 
belief formation and motivational representations. For 
instance, Morris, Heerey, Gold, and Holroyd (2008) and 
Morris, Holroyd, Mann-Wrobel, and Gold (2011) 
attempted to understand impaired reinforcement learn-
ing in schizophrenia. These authors combined both 
behavioral and electrophysiological recordings to test the 
hypothesis of a possible reduction in sensitivity to feed-
back in schizophrenia patients. As noted, the hypothesis 
that the anterior cingulate cortex (ACC) serves to monitor 
and detect conflict to modulate cognitive control is not 
without its critics, and alternative views of the function of 
the ACC have been put forward and modeled by Holroyd 
and Coles (2002) and Holroyd and Yeung (2012).

Specifically, Holroyd and Coles (2002) argued that the 
ACC plays a computational role in response selection by 
integrating reward-prediction errors generated by the 
midbrain DA systems over time to determine which 
motor-control plans should be in charge of the motor 
system. Holroyd and Coles examined this hypothesis in a 
computational model based on reinforcement-learning 
principles. In this model, prediction errors were assumed 
to be carried by the DA systems, and the basal ganglia 
was implemented as an adaptive critic that updated the 
value associated with different response options on each 
trial via a temporal-difference learning algorithm. This 
model can simulate both human behavior and activity of 
the midbrain DA system during reinforcement learning 
and can also capture the pattern of error-related negativ-
ity (ERN) responses during such tasks. The ERN is an 
event-related-potential component that is greater on error 
trials than correct trials and is thought to reflect a genera-
tor in the ACC.

Morris et al. (2008) and Morris et al. (2011) used this 
model conceptually and formally to understand 
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reductions in the response ERN (an ERN that occurs 
when a person makes an error prior to feedback) and the 
feedback ERN (an ERN in response to feedback). Across 
 different experimental paradigms, they found that schizo-
phrenia patients exhibit consistently reduced response 
ERNs but not consistently reduced feedback ERNs. They 
used the model to examine whether changes in predic-
tion error produced by the DA system captures this pat-
tern of impaired response ERN coupled with a relatively 
intact feedback ERN or whether deficits value computa-
tion by the adaptive critic led to this pattern (Gold et al., 
2008). This is a good example of where certain types of 
models can generate inferences across levels of analysis. 
Their simulations suggested that a deficit in the computa-
tion and prediction of value best captured this pattern of 
data, although the authors acknowledged that other work 
has suggested that OFC systems may also contribute to 
the computation of value, not just the basal ganglia (Gold 
et al., 2012; Wallis, 2007; Waltz & Gold, 2007). This mod-
eling work was relatively unique compared with some of 
the approaches described earlier because it focused on 
capturing the pattern of brain activity evoked specifically 
during task performance. However, in these studies, the 
researchers did not attempt to capture performance by 
humans with the model, and it would be important in 
future work to determine whether the model could cap-
ture both behavior and ERN/ACC responses in the same 
task.

In another study, Waltz and Gold (2007) evaluated 
reinforcement-learning deficits in schizophrenia. They 
hypothesized that such abnormalities may be related 
either to slow inability to learn rewarding contingencies 
or to inability to evaluate feedback provided on a 
moment-to-moment basis that can guide behavioral 
adjustments. Either of these behavioral deficits could play 
into reinforcement-learning problems in schizophrenia. 
Waltz and Gold proposed a mechanism for such impair-
ments that was explicitly guided by a computational 
model of reinforcement learning developed by Frank and 
Claus (2006). In brief, the model captures aspects of the 
basal ganglia function and incorporates the specific role 
of DA in the regulation of positive and negative predic-
tion errors, which, in turn, affect behavioral outcomes. 
The model further specifies differential involvement of 
D1 and D2 receptors in driving behavior—specifically, 
the D1-receptor pathways are thought to be involved in 
“go” (or appetitive) actions, whereas the D2-receptor 
pathways are thought to be involved in “no-go” (or with-
drawal) actions (Frank, 2005). In this way, the model 
links system-level physiology (the connectionist model-
ing approach) to complex learning behavior that can 
occur in various paradigms (the behavioral modeling 
approach), which, again, highlights how model and 
experiment can interact at distinct levels of analysis.

Moreover, this modeling approach can generate pre-
dictions regarding specific deficits in schizophrenia 
depending on the predicted alterations in DA signaling 
that may, in turn, affect complex learning behavior (which 
is presently out of reach for microcircuit models reviewed 
in the first section). Indeed, there is compelling evidence 
for alterations in DA function in schizophrenia. A series 
of studies by Abi-Dargham and colleagues (Abi-Dargham 
et al., 1998; Abi-Dargham et al., 2000; Abi-Dargham et al., 
2004; Abi-Dargham et al., 2009) and others (Howes et al., 
2012) have shown that schizophrenia may be associated 
with elevated DA levels in the basal ganglia, which may 
affect learning outcomes involving the DA system.

On the basis of this evidence, Waltz, Frank, Robinson, 
and Gold (2007) predicted that patients with schizophre-
nia might show an increased go propensity during para-
digms that involve reinforcement learning. The model 
generates a parsimonious prediction whereby patients 
may be more likely to execute a motor action (as opposed 
to inhibit) when it is actually disadvantageous to do so. 
In addition, another prediction made by Waltz et  al. 
involves an abnormality in go learning. That is, if there is 
excessive DA tone, then phasic DA signaling during trials 
that involve learning may be reduced (i.e., lower signal-
to-noise due to increased DA levels). This, in turn, may 
result in a decreased learning curve that explicitly relies 
on high phasic/tonic signal-to-noise ratio. With regard to 
behavior, Waltz et al. formalized this prediction as a spe-
cifically lower tendency to execute go responses when 
appropriate accompanied by an overall elevated likeli-
hood to make go responses in general. The authors 
found that patients diagnosed with schizophrenia showed 
a decrease in their learning to respond to those stimuli 
that signaled reward but not an overall decrease in 
response rates. It is interesting that Waltz et al. found that 
patients were no different from matched comparison par-
ticipants when learning in response to negative feedback. 
That is, individuals with schizophrenia were able to 
acquire learning contingencies associated with punish-
ment but not with reward.

Collectively, Waltz et  al. (2007) argued that these 
results are consistent with the notion that patients with 
SZ have a deficit in procedural go learning. They articu-
lated a link of such a behavioral deficit, as predicted by 
the computational model, to a possible deficit in DA 
transmission at D1-type receptors, again supported by 
the connectionist-level modeling architecture. It is also 
important to note that this deficit was observed by Waltz 
et al. even in the context of an overall elevated response 
rate, which may be related to generally increased tonic 
DA levels. These deficits were also shown to be corre-
lated with negative symptoms. Overall, the study by 
Waltz et al. illustrated a link between behavioral and con-
nectionist models, thereby suggesting that intact basal 
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ganglia DA function is critical for appropriate learning. 
Their study also illustrated how selective DA alterations 
may affect unique aspects of learning behavior (i.e., 
reward vs. punishment learning) observed in 
schizophrenia.

Such deficit in learning may be a key behavioral dis-
turbance that, in turn, contributes to negative symptoms 
in schizophrenia, which are complex and involve a broad 
set of behavioral deficits, typically characterized by fea-
tures such as anhedonia, lack of motivation, and flattened 
affective expression, among others (Walker, Kestler, 
Bollini, & Hochman, 2004). To better understand such 
complex behavioral deficits, Gold et al. (2012) and Gold 
et  al. (2008) have merged mathematical modeling with 
behavioral experiments. Specifically, these authors postu-
lated that there might be an underlying deficit in some 
core function that produces the absence of specific 
behaviors, such as motivation (which fall under the broad 
rubric of negative symptoms). Gold et  al. (2012) and 
Gold et al. (2008) tested the specific hypothesis that such 
deficits may in part stem from the patients’ inability to 
represent the expected value of rewarding outcomes, 
also suggested by Waltz et al. (2007). However, they also 
explicitly predicted an intact ability to avoid loss (i.e., 
intact negative reinforcement learning). This prediction is 
vital, given that it involves a unique pattern of errors as 
well as a specific deficit in DA signaling that can be rep-
resented within the Frank (2005) model described earlier, 
which, again, provides a key link between a complex 
behavioral disturbance and neural-system dysfunction 
via modeling.

However, a key unanswered question relates to 
whether specific deficits in learning from positive feed-
back among individuals with schizophrenia result from a 
deficit in positive prediction error or possibly a deficit in 
the ongoing representation of the rewarding outcome 
(Gold et al., 2008; Gold et al., 2012), with the neurobio-
logical correlate of these deficits in either the basal gan-
glia system or the orbitofrontal cortex (OFC), respectively. 
In this framework, the basal ganglia is proposed to medi-
ate slower learning over many trials, whereas the OFC 
system may be guiding faster explicit learning that 
involves representing the trial-specific reward outcome 
temporarily to guide action selection (engaging WM). 
The two components of this learning system would then 
make unique contributions to the reward-learning pro-
cess and may be differentially disrupted in schizophrenia, 
as predicted by Gold et al. (2012). This is an excellent 
example of where modeling of complex learning can 
interface with systems-level neurobiology in schizophre-
nia, in particular involving alterations in the DA system 
(Gold et al., 2012).

Gold et al. (2012) attempted to dissociate these two pos-
sibilities in an experiment in which patients and matched 

comparison participants performed a reinforcement- 
learning task. Specifically, participants were asked to 
select a picture (complex visual scene) out of a presented 
pair. There were four pairs of stimuli in total: Two were 
associated with a high probability of monetary gain and 
the other two were designed for participants to learn to 
avoid a loss of money. The probabilities for either gain or 
loss were 80% and 90% within each pair. This way, the 
authors parametrically manipulated the probability of a 
given outcome. The learning phase was followed by a 
subsequent transfer phase. These results were directly fit 
to the three different types of computational models. The 
first model contained only the pure basal ganglia–driven 
learning system. The second model contained only the 
putative OFC-driven system that required action selection 
based on represented reward. The third version was a 
combination of both systems in which the OFC compo-
nent is hypothesized to provide feedback onto the basal 
ganglia system in a trial-dependent fashion on the basis 
of the expected value. Gold et al. found a striking behav-
ioral dissociation: Compared with healthy comparison 
participants and patients with low negative symptoms, 
schizophrenia patients with high negative symptoms 
were significantly more impaired when they had to learn 
from rewarding outcomes. Of note, lack of deficits in 
patients with low negative symptoms could be due to the 
fact that they were treated patients (in general, reward-
learning findings in treated patients with schizophrenia 
should be interpreted with caution). Conversely, the 
high-negative-symptom patient group was intact in their 
ability to acquire loss-avoidance learning. The pattern of 
behavior exhibited by high-negative-symptom patients 
was best captured by a computational model mainly 
driven by striatal stimulus-response learning. In contrast, 
both control participants and patients with less negative 
symptoms showed a behavioral pattern that involved the 
“striatal” slower learning component as well as the “OFC” 
aspect that involved computing the expected values of 
their actions.

This Gold et al. (2012) study has collectively provided 
a highly compelling behavioral finding that offers evi-
dence for a specific disruption in reward learning in 
those patients with high levels of negative symptoms. In 
turn, the authors linked these behavioral effects to a 
learning mechanism that is formalized via a computa-
tional model. In that sense, Gold et al. have provided an 
explicit mechanistic link between complex behavioral 
disturbances in schizophrenia (i.e., lack of reward learn-
ing in the context of intact loss avoidance) with a math-
ematical formalism of this process that can generate 
future predictions. This behavioral study indirectly sup-
ports the possibility that there may be distinct deficits in 
the OFC versus the basal ganglia circuits in schizophrenia 
that affect distinct aspects of learning behavior. We argue 
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that it is precisely this approach that offers an opportu-
nity for translation into a neuroimaging context to for-
mally test OFC/striatal contributions to the pattern of 
reward-learning deficit in schizophrenia. For instance, 
even at the simple heuristic level, the model would make 
the prediction that the pattern of trial-by-trial BOLD sig-
nal in the OFC in response to reward-learning trials may 
be profoundly affected in patients with elevated negative 
symptoms relative to healthy participants. It is interesting 
that this framework, although designed by Gold et al. to 
test a behavioral deficit, could in theory be combined 
with a pharmacological manipulation of the DA system 
by making specific predictions regarding the role of ele-
vated DA in disrupting OFC versus striatal circuits. Perhaps 
another interesting outcome may be that DA would not 
necessarily play a role in the OFC-mediated computations 
but that such disruptions may be more related to dis-
rupted tuning in cortical circuits as a result of glutamate/
GABA alterations. Testing such competing predictions can 
inform downstream mechanisms that could guide tar-
geted treatments for complex behavioral defects elegantly 
characterized by Gold et al. Future studies are needed to 
continue to refine these normative models to provide 
explicit links across levels of analyses.

Integration Across Levels of Analysis 
and Future Directions

As highlighted throughout the article, schizophrenia is a 
remarkably complex neuropsychiatric illness that affects 
neural computations and, in turn, results in disruptions of 
a wide range of adaptive behaviors. Here, we present 
evidence that computational modeling can serve as a 
useful method to generate testable predictions across lev-
els of inquiry to help understand and ultimately inform 
treatment of this complex disorder. In particular, we 
highlight three conceptual levels of computational mod-
eling that have been applied to experimental work to 
understand human neurobiology and cognition and, by 
extension, disruptions in schizophrenia: (a) biophysically 
based models developed to test cellular-level and synap-
tic hypotheses, (b) connectionist models that give insight 
into large-scale neural-system-level disturbances in 
schizophrenia, and (c) mathematical models that provide 
a formalism for observations of complex behavioral defi-
cits in individuals with schizophrenia (which may over-
lap with other of the two aforementioned approaches). It 
is important to note that we are not attempting to claim 
that each computational study falls within only one of the 
three categories, given that a number clearly blend cate-
gories. However, we have tried to highlight the impor-
tance of matching model type to the best-fitting level of 
inquiry, with the recognition that many modeling efforts 
can also interface elegantly across levels of analysis, to 

maximally guide the interplay between theory and 
experiment.

Each of these approaches has merits but also limita-
tions, given the level of complexity and analysis that it 
considers. We provided examples in which different 
modeling approaches have been successfully applied in 
experimental and clinical studies of schizophrenia at 
each level of analysis. Building on this productive inter-
play, we propose several broad future objectives for the 
field of computational neuropsychiatry. First, specific 
research programs should continue to use modeling that 
is most appropriate to a given level of experimental work. 
This can be accomplished even by models that scale 
across analysis levels, given that some microcircuit and 
connectionist models can generate complex behavioral 
predictions. We argue that maximal insights can be 
gained in cases in which modeling is explicitly interwo-
ven with the appropriate level of experiment, even if it 
cannot inform other levels of analyses. Second, it will be 
important for the field to continue to merge levels of 
analysis across both computational and experimental 
studies. We acknowledge that perhaps no model or 
experiment can alone address the full level of complexity 
needed to understand schizophrenia. However, contin-
ued efforts to merge computational-modeling methods 
from cells to neural systems to behavior may ultimately 
help the field understand how alterations in given neuro-
biological mechanisms can scale to produce the complex 
and devastating disturbances observed in patients. An 
emerging example of precisely this approach is the 
attempt to scale microcircuit models of neuronal dynam-
ics to generate predictions of large-scale BOLD-signal 
fluctuations at rest (Deco et al., 2013), which recently has 
been applied to understand schizophrenia (Yang et al., 
2014).

Third, computational modeling should be used to gen-
erate predictions about specific therapeutic mechanisms, 
across both neurobiological and behavioral levels ( J. D. 
Murray et al., 2014), which can, in turn, be tested experi-
mentally. Fourth, computational modeling has the poten-
tial to help generate predictions about mechanisms of 
illness progression from prodromal to chronic illness 
stages. Such efforts to model the dynamic evolution of 
schizophrenia can help the field understand illness phase–
related mechanisms that may guide appropriate interven-
tion at a given phase of disease progression. Fifth, 
computational models of schizophrenia can be merged in 
a more compressive way with neural measurements that 
can be used for development of biomarkers in a data-
driven way. We propose that resting-state neuroimaging 
approaches offer a promising opportunity, given that they 
may avoid some performance confounds that exist in cog-
nitive experiments (Yang et al., 2014). Last, it will be vital 
for clinical psychology and psychiatry- training programs 
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to emphasize the important interplay of neuroscience, 
behavior, and computation as complementarity tools that 
can be productively integrated in future studies. Therefore, 
providing the best possible multidisciplinary training to 
clinical neuroscience researchers to harness the combina-
tion of experimental and computational approaches 
remains an important objective for the field. By produc-
tively combining both theory and experiment, across lev-
els of inquiry, future studies can better inform 
understanding of mechanisms and, in turn, guide treat-
ment development for schizophrenia in a rational way.
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