Review on computational modeling of schizophrenia

Collaborators and I have a new review published in Clinical Psychological Science, as part of a special series on Computational Psychiatry, titled: Bridging levels of understanding in schizophrenia through computational modeling. The abstract is below:

Schizophrenia is an illness with a remarkably complex symptom presentation that has thus far been out of reach of neuroscientific explanation. This presents a fundamental problem for developing better treatments that target specific symptoms or root causes. One promising path forward is the incorporation of computational neuroscience, which provides a way to formalize experimental observations and, in turn, make theoretical predictions for subsequent studies. We review three complementary approaches: (a) biophysically based models developed to test cellular-level and synaptic hypotheses, (b) connectionist models that give insight into large-scale neural-system-level disturbances in schizophrenia, and (c) models that provide a formalism for observations of complex behavioral deficits, such as negative symptoms. We argue that harnessing all of these modeling approaches represents a productive approach for better understanding schizophrenia. We discuss how blending these approaches can allow the field to progress toward a more comprehensive understanding of schizophrenia and its treatment.